題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:,設(shè),
若(2)中的滿足對任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點在軸上,點在軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在軸上移動時,求動點的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項公式;
(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有;
(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。
一、選擇題(本大題共8小題,每小題5分,共40分)
1.A 2.D 3.D 4.C 5.C 6.B 7.C 8.A
二、填空題(本大題共6小題,每小題5分,共30分)
9. 10.60 11.
12.(1) (2) 13.1, 14.,
注:兩個空的填空題第一個空填對得2分,第二個空填對得3分.
三、解答題(本大題共6小題,共80分)
15.(本小題滿分13分)
解:(Ⅰ)設(shè)等比數(shù)列的公比為,依題意有, (1)
又,將(1)代入得.所以.
于是有 ………………3分
解得或 ………………6分
又是遞增的,故. ………………7分
所以. ………………8分
(Ⅱ),. ………………10分
故由題意可得,解得或.又, …………….12分
所以滿足條件的的最小值為13. ………………13分
16. (本小題滿分13分)
解:(Ⅰ)由 且,
所以. …………………4分
于是. …………7分
(Ⅱ)由正弦定理可得,
所以. …………………….10分
由得. ………………11分
即,
解得.即=7 . …………13分
17.(本小題滿分14分)
解法一:(Ⅰ)∵正方形,∴
又二面角是直二面角,
∴⊥平面.
∵平面,
∴⊥.
又,,是矩形,是的中點,
∴=,,=,
∴⊥又=,
∴⊥平面,
而平面,故平面⊥平面 ……………………5分
(Ⅱ)如圖,由(Ⅰ)知平面⊥平面,且交于,在平面內(nèi)作⊥,垂足為,則⊥平面.
∴∠是與平面所成的角. ……………………7分
∴在Rt△中,=.
.
即與平面所成的角為 . ………………………9分
(Ⅲ)由(Ⅱ),⊥平面.作⊥,垂足為,連結(jié),則⊥,
∴∠為二面角的平面角. ……………………….11分
∵在Rt△中,=,在Rt△中, .
∴在Rt△中, ………13分
即二面角的大小為arcsin. ………………………………14分
解法二:
如圖,以為原點建立直角坐標系,
則(0,0,0),(0,2,0),
(0,2,2),(,,0),
(,0,0).
(Ⅰ) =(,,0),=(,,0),
=(0,0,2),
∴?=(,,0)?(,,0)=0,
? =(,,0)?(0,0,2)= 0.
∴⊥,⊥,
∴⊥平面,又平面,故平面⊥平面. ……5分
(Ⅱ)設(shè)與平面所成角為.
由題意可得=(,,0),=(0,2,2 ),=(,,0).
設(shè)平面的一個法向量為=(,,1),
由.
.
∴與平面所成角的大小為. ……………..9分
(Ⅲ)因=(1,-1,1)是平面的一個法向量,
又⊥平面,平面的一個法向量=(,0,0),
∴設(shè)與的夾角為,得,
∴二面角的大小為. ………………………………14分
18. (本小題滿分13分)
解:(Ⅰ)設(shè)事件表示甲運動員射擊一次,恰好擊中9環(huán)以上(含9環(huán)),則
. ……………….3分
甲運動員射擊3次均未擊中9環(huán)以上的概率為
. …………………5分
所以甲運動員射擊3次,至少有1次擊中9環(huán)以上的概率為
. ………………6分
(Ⅱ)記乙運動員射擊1次,擊中9環(huán)以上為事件,則
…………………8分
由已知的可能取值是0,1,2. …………………9分
;
;
.
的分布列為
0
1
2
0.05
0.35
0.6
………………………12分
所以
故所求數(shù)學期望為. ………………………13分
19. (本小題滿分14分)
解:(Ⅰ)由已知 ,故,所以直線的方程為.
將圓心代入方程易知過圓心 . …………………………3分
(Ⅱ) 當直線與軸垂直時,易知符合題意; ………………4分
當直線與軸不垂直時,設(shè)直線的方程為,由于,
所以由,解得.
故直線的方程為或. ………………8分
(Ⅲ)當與軸垂直時,易得,,又則
,故. 即. ………………10分
當的斜率存在時,設(shè)直線的方程為,代入圓的方程得
.則
,即,
.又由得,
則.
故.
綜上,的值為定值,且. …………14分
另解一:連結(jié),延長交于點,由(Ⅰ)知.又于,
故△∽△.于是有.
由得
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com