當(dāng)變化時(shí)..的變化情況如下表: 查看更多

 

題目列表(包括答案和解析)

受日月引力影響,海水會(huì)發(fā)生漲退潮現(xiàn)象.通常情況下,船在漲潮時(shí)駛進(jìn)港口,退潮時(shí)離開(kāi)港口.某港口在某季節(jié)每天港口水位的深度(米)是時(shí)間,單位:小時(shí),表示0:00—零時(shí))的函數(shù),其函數(shù)關(guān)系式為.已知一天中該港口水位的深度變化有如下規(guī)律:出現(xiàn)相鄰兩次最高水位的深度的時(shí)間差為12小時(shí),最高水位的深度為12米,最低水位的深度為6米,每天13:00時(shí)港口水位的深度恰為10.5米.
(1)試求函數(shù)的表達(dá)式;
(2)某貨船的吃水深度(船底與水面的距離)為7米,安全條例規(guī)定船舶航行時(shí)船底與海底的距離不小于3.5米是安全的,問(wèn)該船在當(dāng)天的什么時(shí)間段能夠安全進(jìn)港?若該船欲于當(dāng)天安全離港,則它最遲應(yīng)在當(dāng)天幾點(diǎn)以前離開(kāi)港口?

查看答案和解析>>

受日月引力影響,海水會(huì)發(fā)生漲退潮現(xiàn)象.通常情況下,船在漲潮時(shí)駛進(jìn)港口,退潮時(shí)離開(kāi)港口.某港口在某季節(jié)每天港口水位的深度(米)是時(shí)間,單位:小時(shí),表示0:00—零時(shí))的函數(shù),其函數(shù)關(guān)系式為.已知一天中該港口水位的深度變化有如下規(guī)律:出現(xiàn)相鄰兩次最高水位的深度的時(shí)間差為12小時(shí),最高水位的深度為12米,最低水位的深度為6米,每天13:00時(shí)港口水位的深度恰為10.5米.
(1)試求函數(shù)的表達(dá)式;
(2)某貨船的吃水深度(船底與水面的距離)為7米,安全條例規(guī)定船舶航行時(shí)船底與海底的距離不小于3.5米是安全的,問(wèn)該船在當(dāng)天的什么時(shí)間段能夠安全進(jìn)港?若該船欲于當(dāng)天安全離港,則它最遲應(yīng)在當(dāng)天幾點(diǎn)以前離開(kāi)港口?

查看答案和解析>>

已知函數(shù)其中為自然對(duì)數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對(duì)于任意的,都有成立,求的取值范圍.

【解析】第一問(wèn)中,當(dāng)時(shí),,.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。

第二問(wèn)中,∵,,      

∴原不等式等價(jià)于:,

, 亦即

分離參數(shù)的思想求解參數(shù)的范圍

解:(Ⅰ)當(dāng)時(shí),,

當(dāng)上變化時(shí),,的變化情況如下表:

 

 

1/e

時(shí),,

(Ⅱ)∵,,      

∴原不等式等價(jià)于:,

, 亦即

∴對(duì)于任意的,原不等式恒成立,等價(jià)于對(duì)恒成立,

∵對(duì)于任意的時(shí), (當(dāng)且僅當(dāng)時(shí)取等號(hào)).

∴只需,即,解之得.

因此,的取值范圍是

 

查看答案和解析>>

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對(duì)任意的成立,求實(shí)數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

,得

當(dāng)x變化時(shí),,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

,得

①當(dāng)時(shí),,上恒成立。因此上單調(diào)遞減.從而對(duì)于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時(shí),,對(duì)于,,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

當(dāng)時(shí),

                      

                      

在(2)中取,得 ,

從而

所以有

     

     

     

     

      

綜上,

 

查看答案和解析>>

已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.

【解析】第一問(wèn)當(dāng)時(shí),,則。

依題意得:,即    解得

第二問(wèn)當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問(wèn)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時(shí),,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時(shí),,令

當(dāng)變化時(shí),的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,!上的最大值為2.

②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

當(dāng)時(shí), 上單調(diào)遞增。∴最大值為。

綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無(wú)解,因此。此時(shí)

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

∴對(duì)于,方程(**)總有解,即方程(*)總有解。

因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>


同步練習(xí)冊(cè)答案