-------4分 可知.原方程為 查看更多

 

題目列表(包括答案和解析)

(1)選修4-4:矩陣與變換
已知曲線C1:y=繞原點逆時針旋轉45°后可得到曲線C2:y2-x2=2,
(I)求由曲線C1變換到曲線C2對應的矩陣M1;    
(II)若矩陣,求曲線C1依次經(jīng)過矩陣M1,M2對應的變換T1,T2變換后得到的曲線方程.
(2)選修4-4:坐標系與參數(shù)方程
已知直線l的極坐標方程是ρcosθ+ρsinθ-1=0.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,在曲線C:(θ為參數(shù))上求一點,使它到直線l的距離最小,并求出該點坐標和最小距離.
(3)(選修4-5:不等式選講)
將12cm長的細鐵線截成三條長度分別為a、b、c的線段,
(I)求以a、b、c為長、寬、高的長方體的體積的最大值;
(II)若這三條線段分別圍成三個正三角形,求這三個正三角形面積和的最小值.

查看答案和解析>>

(1)選修4-4:矩陣與變換
已知曲線C1:y=
1
x
繞原點逆時針旋轉45°后可得到曲線C2:y2-x2=2,
(I)求由曲線C1變換到曲線C2對應的矩陣M1;    
(II)若矩陣M2=
20
03
,求曲線C1依次經(jīng)過矩陣M1,M2對應的變換T1,T2變換后得到的曲線方程.
(2)選修4-4:坐標系與參數(shù)方程
已知直線l的極坐標方程是ρcosθ+ρsinθ-1=0.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,在曲線C:
x=-1+cosθ
y=sinθ
(θ為參數(shù))上求一點,使它到直線l的距離最小,并求出該點坐標和最小距離.
(3)(選修4-5:不等式選講)
將12cm長的細鐵線截成三條長度分別為a、b、c的線段,
(I)求以a、b、c為長、寬、高的長方體的體積的最大值;
(II)若這三條線段分別圍成三個正三角形,求這三個正三角形面積和的最小值.

查看答案和解析>>

已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關系的運用。

第一問中,可設橢圓的標準方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標準方程為

第二問中,

假設存在這樣的直線,設,MN的中點為

 因為|ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得

代入1,2式中得到范圍。

(Ⅰ) 可設橢圓的標準方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標準方程為

 (Ⅱ) 假設存在這樣的直線,設,MN的中點為

 因為|ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

 

查看答案和解析>>

(本小題滿分14分)(1)
(本小題滿分7分)選修4-2:矩陣與變換
已知曲線繞原點逆時針旋轉后可得到曲線,
(I)求由曲線變換到曲線對應的矩陣;.
(II)若矩陣,求曲線依次經(jīng)過矩陣對應的變換變換后得到的曲線方程.
(2)(本小題滿分7分)選修4—4:坐標系與參數(shù)方程
已知直線的參數(shù)方程為t為參數(shù)),曲線C的極坐標方程為
(1)求曲線C的直角坐標方程;  (2)求直線被曲線C截得的弦長.

查看答案和解析>>

(本小題滿分14分)(1)

(本小題滿分7分)選修4-2:矩陣與變換

已知曲線繞原點逆時針旋轉后可得到曲線

(I)求由曲線變換到曲線對應的矩陣;.

(II)若矩陣,求曲線依次經(jīng)過矩陣對應的變換變換后得到的曲線方程.

(2)(本小題滿分7分)選修4—4:坐標系與參數(shù)方程

已知直線的參數(shù)方程為t為參數(shù)),曲線C的極坐標方程為

 

(1)求曲線C的直角坐標方程;   (2)求直線被曲線C截得的弦長.

 

查看答案和解析>>


同步練習冊答案