(2)令.證明:數(shù)列是等比數(shù)列, 查看更多

 

題目列表(包括答案和解析)

數(shù)列{bn}的首項b1=1,前n項和為Sn,點(n,Sn)、(4,10)都在二次函數(shù)y=ax2+bx的圖象上,數(shù)列{an}滿足
bn
an
=2n
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)令cn=(1-
1
n+1
1
an
,Rn=
1
c1
+
1
c2
+
1
c3
+…+
1
cn
.試比較Rn
5n
2n+1
的大小,并證明你的結(jié)論.

查看答案和解析>>

數(shù)列{an}是公差為d(d>0)的等差數(shù)列,且a2是a1與a4的等比中項,設(shè)Sn=a1+a3+a5+…+a2n-1(n∈N*).
(1)求證:
Sn
+
Sn+2
=2
Sn+1
;
(2)若d=
1
4
,令bn=
Sn
2n-1
,{bn}的前n項和為Tn,是否存在整數(shù)P、Q,使得對任意n∈N*,都有P<Tn<Q,若存在,求出P的最大值及Q的最小值;若不存在,請說明理由.

查看答案和解析>>

等差數(shù)列{ an}中a3=7,a1+a2+a3=12,記Sn為{an}的前n項和,令bn=anan+1,數(shù)列{
1
bn
}的前n項和為Tn
(1)求an和Sn
(2)求證:Tn
1
3
;
(3)是否存在正整數(shù)m,n,且1<m<n,使得T1,Tm,Tn成等比數(shù)列?若存在,求出m,n的值,若不存在,說明理由.

查看答案和解析>>

等差數(shù)列{an}中a3=7,a1+a2+a3=12,記為{an}的前n項和,令bn=anan+1,數(shù)列的前n項和為Tn.(1)求an和Sn; (2)求證:Tn<;(3)是否存在正整數(shù)m , n ,且1<m<n ,使得T1 , Tm , Tn成等比數(shù)列?若存在,求出m ,n的值,若不存在,說明理由.

查看答案和解析>>

數(shù)列{bn}的首項b1=1,前n項和為Sn,點(n,Sn)、(4,10)都在二次函數(shù)y=ax2+bx的圖象上,數(shù)列{an}滿足數(shù)學(xué)公式=2n
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)令cn=(數(shù)學(xué)公式數(shù)學(xué)公式,Rn=數(shù)學(xué)公式+數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式
試比較Rn數(shù)學(xué)公式的大小,并證明你的結(jié)論.

查看答案和解析>>

一、選擇題: 本大題共12小題,每小題5分,共60分.

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

B

C

D

B

C

A

D

C

D

B

B

二、填空題:本大題共4小題,每小題4分,共16分.

13.        14.        15.        16.

三、解答題:本大題共6小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

17.(本小題滿分12分)

解:⑴f (x)=?-1=(sin2x,cosx)?(1,2cosx)-1

          =sin2x+2cos2x-1= sin2x+cos2x=2sin(2x+)               3分

      由2kπ-≤2x+≤2kπ+ 得kπ-≤x≤kπ+

      ∴f (x)的遞增區(qū)間為 (k∈Z)                             6分

⑵f (A)=2sin(2A)=2  ∴sin(2A)=1

2A∴A=                                                     9分

由正弦定理得: .∴邊長b的值為.               12分

18.(本小題滿分12分)

 解: 將一顆骰子先后拋擲2次,此問題中含有36個等可能基本事件               1分

(1)記“兩數(shù)之和為5”為事件A,則事件A中含有4個基本事件,

所以P(A)=

答:兩數(shù)之和為5的概率為.                                            4分

 (2)記“兩數(shù)中至少有一個奇數(shù)”為事件B,則事件B與“兩數(shù)均為偶數(shù)”為對立事件,

所以P(B)=

答:兩數(shù)中至少有一個奇數(shù)的概率.                                     8分

(3)基本事件總數(shù)為36,點(x,y)在圓x2+y2=15的內(nèi)部記為事件C,則C包含8個事件,

所以P(C)=

答:點(x,y)在圓x2+y2=15的內(nèi)部的概率.                               12分

19.(本小題滿分12分)

(1)證法1:如圖,取的中點,連接,

分別為的中點,∴

分別為的中點,∴

四點共面.………………………………………………………………2分

分別為的中點,∴.……………………………………4分

平面,平面,

平面.……………………………………………………………………6分

證法2:∵分別為的中點,

,.……………………………………………………………2分

,∴.又

                          …………………4分

,∴平面平面.               …………………5分

平面,∴平面. …………………………………………6分

(2)解:∵平面,平面,∴

為正方形,∴

,∴平面.……………………………………………8分

,∴.……………10分

,

.…………………………………12分

20.(本小題滿分12分)

解:(1)∵

                                     …………………2分

(2)證明:

    

        是以為首項,2為公比的等比數(shù)列.        ………………7分

       (3)由(I)得

      

                                         ………………12分

21.(本小題滿分12分)

解:(1)設(shè)切線的斜率為k,則           ………2分

    又,所以所求切線的方程為:                           …………4分

     即                                                                              …………6分

   (2), ∵為單調(diào)增函數(shù),∴

    即對任意的                                                 …………8分

   

                                                                          …………10分

    而,當(dāng)且僅當(dāng)時,等號成立.

所以                                                  …………12分

22.(本小題滿分14分)

解:(1)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為,

       由已知得:                       …………3分

       橢圓的標(biāo)準(zhǔn)方程為.                                 …………5分

       (2)設(shè)

       聯(lián)立      得:,      …………6分

則        …………8分

       又

       因為以為直徑的圓過橢圓的右頂點,

       ,即.                            …………9分

      

      

       .                                      …………10分

       解得:,且均滿足.         …………11分

       當(dāng)時,的方程,直線過點,與已知矛盾;…………12分

       當(dāng)時,的方程為,直線過定點.     …………13分

       所以,直線過定點,定點坐標(biāo)為.                         …………14分

 

 

 

 

 


同步練習(xí)冊答案