題目列表(包括答案和解析)
(本小題滿分12分)
如圖,棱柱ABCD-A1B1C1D1的底面ABCD為菱形,平面AA1C1C⊥平面ABC D.
(1)證明:BD⊥AA1;
(2)證明:平面AB1C//平面DA1C1
(3)在直線CC1上是否存在點P,使BP//平面DA1C1?若存在,求出點P的位置;若不存在,說明理由.
(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,
E是CD的中點,PA⊥底面ABCD,PA=2.
(Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的大小.
(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.
(1)證明:平面PBE平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。
(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.
(1)證明:平面PBE平面PAB;
(2)求PC與平面PAB所成角的余弦值。
(本小題滿分12分)如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,,E,F(xiàn)分別是BC, PC的中點.
(1)證明:AE⊥PD;
(2)若H為PD上的動點,EH與平面PAD所成最大角的正切值為,求二面角E—AF—C的余弦值.
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
A
D
B
C
C
A
B
C
B
A
13. 14. 2 15. 16. ① ④
17.1) ……2分
當 ∴ ……4分
,對稱中心 ……6分
(2) ……8分
……10分
, ……12分
18. 解:1) ……5分
(2)分布列:
0
1
2
3
4
,,
,
評分:下面5個式子各1分,列表和期望計算2分(5+2=7分)
19. 解:(1)
所以
(2)設 ……8分
當
當
所以,當
的最小值為……………………………… 12分
20.解法1:
(1)過S作,,連
∴
∴ ……4分
(2),,∴是平行四邊形
故平面
過A作,,連
∴為平面和
二面角平面角,而
應用等面積:,
∵,
故題中二面角為 ……4分
(3)∵∥,到距離為到距離
又∵,,∴平面,∴平面
∴平面平面,只需B作SE連線BO1,BO1=
設線面角為,,,
∴,故線面角為 ……4分
解法2:
(1)同上
(2)建立直角坐標系
平面SDC法向量為,
,,
設平面SAD法向量
,取,,
∴ ∴
∴二面角為
(3)設線面角為,
∴
21.(1)
時,
……
∴
∴
∴ (3分)
時,
……
∴ (5分)
故(6分)
(2)
又∵,∴
∴(12分)
22.(1)設,,
∵
∴,∴ (3分)
所以P點的軌跡是以為焦點,實半軸長為1的雙曲線的右支(除頂點)。(4分)
(2)設PE斜率為,PR斜率為
PE: PR:
令,,
∴ …………(6分)
由PF和園相切得:,PR和園相切得:
故:為兩解
故有:
, ……(8分)
又∵,∴,∴ (11分)
設,
故,,
∴ (14分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com