12.某公司有60萬元資金.計(jì)劃投資甲.乙兩個(gè)項(xiàng)目.按要求對項(xiàng)目甲的投資不小于對項(xiàng)目乙投資的倍.且對每個(gè)項(xiàng)目的投資不能低于5萬元.對項(xiàng)目甲每投資1萬元可獲得0.4萬元的利潤.對項(xiàng)目乙每投資1萬元可獲得0.6萬元的利潤.該公司正確規(guī)劃投資后.在這兩個(gè)項(xiàng)目上共可獲得的最大利潤為 查看更多

 

題目列表(包括答案和解析)

某公司有60萬元資金,計(jì)劃投資甲、乙兩個(gè)項(xiàng)目.按要求對甲項(xiàng)目的投資不少于對乙項(xiàng)目投資的
23
倍,且對每個(gè)項(xiàng)目的投資不能低于5萬元;對甲項(xiàng)目每投資1萬元可獲得0.4萬元的利潤,對乙項(xiàng)目每投資1萬元可獲得0.6萬元的利潤,如該公司在正確規(guī)劃后,在這兩個(gè)項(xiàng)目上共可獲得的最大利潤為
 
萬元.

查看答案和解析>>

某公司有60萬元資金,計(jì)劃投資甲、乙兩個(gè)項(xiàng)目,按要求對項(xiàng)目甲的投資不小于對項(xiàng)目乙投資的
2
3
倍,且對每個(gè)項(xiàng)目的投資不能低于5萬元,對項(xiàng)目甲每投資1萬元可獲得0.4萬元的利潤,對項(xiàng)目乙每投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃投資后,在這兩個(gè)項(xiàng)目上共可獲得的最大利潤為( 。
A、36萬元
B、31.2萬元
C、30.4萬元
D、24萬元

查看答案和解析>>

某公司有60萬元資金,計(jì)劃投資甲、乙兩個(gè)項(xiàng)目,按要求對項(xiàng)目甲的投資不小于對項(xiàng)目乙投資的倍,且對每個(gè)項(xiàng)目的投資不能低于5萬元,對項(xiàng)目甲每投資1萬元可獲得0.4萬元的利潤,對項(xiàng)目乙每投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃投資后,在這兩個(gè)項(xiàng)目上共可獲得的最大利潤為(  )

(A)36萬元        (B)31.2萬元     (C)30.4萬元       (D)24萬元

查看答案和解析>>

某公司有60萬元資金,計(jì)劃投資甲、乙兩個(gè)項(xiàng)目,按要求對項(xiàng)目甲的投資不小于對項(xiàng)目乙投資的倍,且對每個(gè)項(xiàng)目的投資不能低于5萬元,對項(xiàng)目甲每投資1萬元可獲得0.4萬元的利潤,對項(xiàng)目乙每投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃投資后,在這兩個(gè)項(xiàng)目上共可獲得的最大利潤為(  )

(A)36萬元        (B)31.2萬元     (C)30.4萬元       (D)24萬元

查看答案和解析>>

某公司有60萬元資金,計(jì)劃投資甲、乙兩個(gè)項(xiàng)目,按要求對項(xiàng)目甲的投資不小于對項(xiàng)目乙投資的倍,且對每個(gè)項(xiàng)目的投資不能低于5萬元,對項(xiàng)目甲每投資1萬元可獲得0.4萬元的利潤,對項(xiàng)目乙每投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃投資后,在這兩個(gè)項(xiàng)目上共可獲得的最大利潤為( 。

(A)36萬元        (B)31.2萬元     (C)30.4萬元       (D)24萬元

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空題:本大題共4個(gè)小題,每小題4分,共16分。

13.    14.1:2    15.①②⑤    16.⑤

20090203

17.(本小題滿分12分)

    解:(I)共線

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小題滿分12分)

解:根據(jù)題意得圖02,其中BC=31千米,BD=20千米,CD=21千米

∠CAB=60˚.設(shè)∠ACD = α ,∠CDB = β .

    ,

    .……9分

    在△ACD中,由正弦定理得:

    19.(本小題滿分12分)

    解:(1)連結(jié)OP,∵Q為切點(diǎn),PQOQ,

    由勾股定理有,

    又由已知

    即: 

    化簡得 …………3分

       (2)由,得

    …………6分

    故當(dāng)時(shí),線段PQ長取最小值 …………7分

       (3)設(shè)⊙P的半徑為R,∵⊙P與⊙O有公共點(diǎn),⊙O的半徑為1,

    即R且R

    故當(dāng)時(shí),,此時(shí)b=―2a+3=

    得半徑最最小值時(shí)⊙P的方程為…………12分

    20.(本小題滿分12分)

    解:(I)過G作GM//CD交CC1于M,交D1C于O。

    <center id="6z2ni"><ul id="6z2ni"><dfn id="6z2ni"></dfn></ul></center>

      ∵G為DD1的中點(diǎn),∴O為D1C的中點(diǎn)

      從而GO

      故四邊形GFBO為平行四邊形…………3分

      ∴GF//BO

      又GF平面BCD1,BO平面BCD1

      ∴GF//平面BCD1。 …………5分

         (II)過A作AH⊥DE于H,

      過H作HN⊥EC于N,連結(jié)AN。

      ∵DC⊥平面ADD1A1,∴CD⊥AH。

      又∵AH⊥DE,∴AH⊥平面ECD。

      ∴AH⊥EC。 …………7分

      又HN⊥EC

      ∴EC⊥平面AHN。

      故AN⊥∴∠ANH為二面角A―CE―D的平面角 …………9分

      在Rt△EAD中,∵AD=AE=1,∴AH=

      在Rt△EAC中,∵EA=1,AC=

        …………12分

      21.(本小題滿分12分)

      解:(I)

       

         (II)

         (III)令上是增函數(shù)

      22.(本小題滿分12分)

      解:(I)

      單調(diào)遞增。 …………2分

      ,不等式無解;

      ;

      所以  …………5分

         (II), …………6分

                               …………8分

      因?yàn)閷σ磺?sub>……10分

         (III)問題等價(jià)于證明,

      由(1)可知

                                                         …………12分

      設(shè)

      易得

      當(dāng)且僅當(dāng)成立。

                                                       …………14分

       

       

       


      同步練習(xí)冊答案