9.已知m.n是不重合的直線.是不重合的平面.給出下列命題: 查看更多

 

題目列表(包括答案和解析)

已知m,n是不重合的直線,α,β是不重合的平面,有下列命題:①若n∥α,則m∥n;②若m∥α,n∥β,則α∥β;③若α∩β=n,m∥n,則m∥α且m∥β;④若m⊥α,m⊥β,則α∥β.其中真命題的個數(shù)是

[  ]

A.0

B.1

C.2

D.3

查看答案和解析>>

7、已知m、n是不重合的直線,α、β是不重合的平面,有下列命題:
(1)若α∩β=n,m∥n,則m∥α,m∥β;
(2)若m⊥α,m⊥β,則α∥β;
(3)若m∥α,m⊥n,則n⊥α;
(4)若m⊥α,n?α,則m⊥n.
其中所有真命題的序號是
(2)(4)

查看答案和解析>>

4、已知m、n是不重合的直線,α、β是不重合的平面,有下列命題:
①若m?α,n∥α,則m∥n;
②若m∥α,m∥β,則α∥β;
③若α∩β=n,m∥n,則m∥α且m∥β;
④若m⊥α,m⊥β,則α∥β.
其中真命題的個數(shù)是( 。

查看答案和解析>>

已知m、n是不重合的直線,α、β是不重合的平面,給出下列四個命題
①若m⊥α,m⊥β,則α∥β
②若m?α,n?β,m∥n,則α∥β
③若m∥n,m⊥α,則n⊥α
④若m⊥α,m?β,則α⊥β
其中正確命題的個數(shù)為( 。

查看答案和解析>>

已知m、n是不重合的直線,α、β是不重合的平面,有下列命題:

①若mα,n∥α,則m∥n;②若m∥α,m∥β,則α∥β;③若α∩β=n,m∥n,則m∥α且m∥β;④若m⊥α,m⊥β,則α∥β.其中真命題的個數(shù)是(    )

A.0個                B.1個                   C.2個                   D.3個

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

ABBD    DABD    BCCA

二、填空題:本大題共4小題,每小題4分,共16分。

13.    14.3    15.    16.①③

三、解答題:本大題共6小題,共74分。解答應寫出文字說明、證明過程或演算步驟。

17.解:(I)………2分

    依題意函數(shù)

    所以 …………4分

   

   (II)

   

18.解:(I)由題意得:上年度的利潤的萬元;

    本年度每輛車的投入成本為萬元;

    本年度每輛車的出廠價為萬元;

    本年度年銷售量為 ………………2分

    因此本年度的利潤為

   

   (II)本年度的利潤為

   

………………7分

(舍去)。  …………9分

<pre id="97ux5"></pre>

    19.(I)解:取CE中點P,連結FP、BP,

    ∵F為CD的中點,

    ∴FP//DE,且FP=

    又AB//DE,且AB=

    ∴AB//FP,且AB=FP,

    ∴ABPF為平行四邊形,∴AF//BP!2分

    又∵AF平面BCE,BP平面BCE,

    ∴AF//平面BCE。 …………4分

       (II)∵△ACD為正三角形,∴AF⊥CD。

    ∵AB⊥平面ACD,DE//AB,

    ∴DE⊥平面ACD,又AF平面ACD,

    ∴DE⊥AF。又AF⊥CD,CD∩DE=D,

    ∴AF⊥平面CDE。 …………6分

    又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

    ∴平面BCE⊥平面CDE。 …………8分

       (III)由(II),以F為坐標原點,F(xiàn)A,F(xiàn)D,F(xiàn)P所在的直線分別為x,y,z軸(如圖),建立空間直角坐標系F―xyz.設AC=2,

    則C(0,―1,0),………………9分

     ……10分

    顯然,為平面ACD的法向量。

    設平面BCE與平面ACD所成銳二面角為

    ,即平面BCE與平面ACD所成銳二面角為45°!12分

    20.(I)證明:當,

    , …………3分

    , …………5分

    所以,的等比數(shù)列。 …………6分

       (II)解:由(I)知, …………7分

    可見,若存在滿足條件的正整數(shù)m,則m為偶數(shù)。 …………9分

    21.解:(I)解:由

    知點C的軌跡是過M,N兩點的直線,故點C的軌跡方程是:

       (II)解:假設存在于D、E兩點,并以線段DE為直徑的圓都過原點。設

        由題意,直線l的斜率不為零,

        所以,可設直線l的方程為

        代入 …………7分

       

        此時,以DE為直徑的圓都過原點。 …………10分

        設弦DE的中點為

       

    22.解:(I)函數(shù)

         …………1分

         …………2分

        當

        列表如下:

    +

    0

    極大值

        綜上所述,當

        當 …………5分

       (II)若函數(shù)

        當,

        當,故不成立。 …………7分

        當由(I)知,且是極大值,同時也是最大值。

        從而

        故函數(shù) …………10分

       (III)由(II)知,當

       

     

     

     


    同步練習冊答案
    <pre id="97ux5"><dfn id="97ux5"></dfn></pre>
  • <ins id="97ux5"><dfn id="97ux5"></dfn></ins>
  • <input id="97ux5"></input>
    <acronym id="97ux5"><code id="97ux5"></code></acronym>
    <optgroup id="97ux5"></optgroup>