題目列表(包括答案和解析)
該空間幾何體為一圓柱和一四棱錐組成的,圓柱的底面半徑為1,高為2,體積為,四棱錐的底面邊長(zhǎng)為,高為,所以體積為
所以該幾何體的體積為.
答案:C
【命題立意】:本題考查了立體幾何中的空間想象能力,
由三視圖能夠想象得到空間的立體圖,并能準(zhǔn)確地計(jì)算出
幾何體的體積.
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值
于是對(duì)一切恒成立,當(dāng)且僅當(dāng). ①
令則
當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.
故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),即
從而,又
所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
已知曲線和相交于點(diǎn)A,
(1)求A點(diǎn)坐標(biāo);
(2)分別求它們?cè)贏點(diǎn)處的切線方程(寫成直線的一般式方程);
(3)求由曲線在A點(diǎn)處的切線及以及軸所圍成的圖形面積。(畫出草圖)
【解析】本試題主要考察了導(dǎo)數(shù)的幾何意義的運(yùn)用,以及利用定積分求解曲邊梯形的面積的綜合試題。先確定切點(diǎn),然后求解斜率,最后得到切線方程。而求解面積,要先求解交點(diǎn),確定上限和下限,然后借助于微積分基本定理得到。
函數(shù)有意義,需使,其定義域?yàn)?sub>,排除C,D,又因?yàn)?sub>,所以當(dāng)時(shí)函數(shù)為減函數(shù),故選A. w.w.w.k.s.5.u.c.o.m
答案:A.
【命題立意】:本題考查了函數(shù)的圖象以及函數(shù)的定義域、值域、單調(diào)性等性質(zhì).本題的難點(diǎn)在于給出的函數(shù)比較復(fù)雜,需要對(duì)其先變形,再在定義域內(nèi)對(duì)其進(jìn)行考察其余的性質(zhì).
已知曲線和相交于點(diǎn)A,
(1)求A點(diǎn)坐標(biāo);
(2)分別求它們?cè)贏點(diǎn)處的切線方程(寫成直線的一般式方程);
(3)求由曲線在A點(diǎn)處的切線及以及軸所圍成的圖形面積。(畫出草圖)
【解析】本試題主要考察了導(dǎo)數(shù)的幾何意義的運(yùn)用,以及利用定積分求解曲邊梯形的面積的綜合試題。先確定切點(diǎn),然后求解斜率,最后得到切線方程。而求解面積,要先求解交點(diǎn),確定上限和下限,然后借助于微積分基本定理得到。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com