題目列表(包括答案和解析)
在中,是三角形的三內角,是三內角對應的三邊,已知成等差數(shù)列,成等比數(shù)列
(Ⅰ)求角的大;
(Ⅱ)若,求的值.
【解析】第一問中利用依題意且,故
第二問中,由題意又由余弦定理知
,得到,所以,從而得到結論。
(1)依題意且,故……………………6分
(2)由題意又由余弦定理知
…………………………9分
即 故
代入得
設拋物線:(>0)的焦點為,準線為,為上一點,已知以為圓心,為半徑的圓交于,兩點.
(Ⅰ)若,的面積為,求的值及圓的方程;
(Ⅱ)若,,三點在同一條直線上,直線與平行,且與只有一個公共點,求坐標原點到,距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關系、點到直線距離公式、線線平行等基礎知識,考查數(shù)形結合思想和運算求解能力.
【解析】設準線于軸的焦點為E,圓F的半徑為,
則|FE|=,=,E是BD的中點,
(Ⅰ) ∵,∴=,|BD|=,
設A(,),根據(jù)拋物線定義得,|FA|=,
∵的面積為,∴===,解得=2,
∴F(0,1), FA|=, ∴圓F的方程為:;
(Ⅱ) 解析1∵,,三點在同一條直線上, ∴是圓的直徑,,
由拋物線定義知,∴,∴的斜率為或-,
∴直線的方程為:,∴原點到直線的距離=,
設直線的方程為:,代入得,,
∵與只有一個公共點, ∴=,∴,
∴直線的方程為:,∴原點到直線的距離=,
∴坐標原點到,距離的比值為3.
解析2由對稱性設,則
點關于點對稱得:
得:,直線
切點
直線
坐標原點到距離的比值為
x-b |
x-1 |
x-k |
x-1 |
(本小題滿分12分)
已知奇函數(shù)的反函數(shù)的圖象過點.
(1)求實數(shù)的值;
(2)解關于x的不等式
(本小題滿分12分)
已知奇函數(shù)的反函數(shù)的圖象過點.
(1)求實數(shù)的值;
(2)解關于x的不等式
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com