9.如果執(zhí)行如圖所示的程序框圖.那么輸出的S= A.2450 B.2500 C.2550 D.2652 查看更多

 

題目列表(包括答案和解析)

9、如果執(zhí)行如圖所示的程序框圖,那么輸出的值k=
4

查看答案和解析>>

如果執(zhí)行如圖所示的程序框圖,那么輸出的S=(  )
精英家教網(wǎng)
A、4
B、
3
2
C、
2
3
D、-1

查看答案和解析>>

精英家教網(wǎng)如果執(zhí)行如圖所示的程序框圖,那么輸出的S=( 。
A、1
B、
101
100
C、
99
100
D、
98
99

查看答案和解析>>

如果執(zhí)行如圖所示的程序框圖,那么輸出的S=
12
12

查看答案和解析>>

如果執(zhí)行如圖所示的程序框圖,那么輸出的s=
11
45
11
45

查看答案和解析>>

 

第Ⅰ卷(選擇題  共60分)

一、選擇題

    • 20080422

      第Ⅱ卷(非選擇題  共90分)

      二、填空題

      13.2    14.3   15.   16.①③④

      三、解答題

      17.解:(1)由正弦定理得,…………………………………….….3分

         ,因此!.6分

      (2)的面積,,………..8分

      ,所以由余弦定理得….10分

      。…………………………………………………………………………….12分

      文本框:  18.方法一:                

      (1)證明:連結(jié)BD,

      ∵D分別是AC的中點,PA=PC=

      ∴PD⊥AC,

      ∵AC=2,AB=,BC=

      ∴AB2+BC2=AC2,

      ∴∠ABC=90°,即AB⊥BC.…………2分

      ∴BD=,

      ∵PD2=PA2―AD2=3,PB

      ∴PD2+BD2=PB2,

      ∴PD⊥BD,

      ∵ACBD=D

      ∴PD⊥平面ABC.…………………………4分

      (2)解:取AB的中點E,連結(jié)DE、PE,由E為AB的中點知DE//BC,

      ∵AB⊥BC,

      ∴AB⊥DE,

      ∵DE是直線PE的底面ABC上的射景

      ∴PE⊥AB

      ∴∠PED是二面角P―AB―C的平面角,……………………6分

      在△PED中,DE=∠=90°,

      ∴tan∠PDE=

      ∴二面角P―AB―C的大小是

      (3)解:設(shè)點E到平面PBC的距離為h.

      ∵VP―EBC=VE―PBC,

      ……………………10分

      在△PBC中,PB=PC=,BC=

      而PD=

      ∴點E到平面PBC的距離為……………………12分

      方法二:

      (1)同方法一:

      (2)解:解:取AB的中點E,連結(jié)DE、PE,

      過點D作AB的平行線交BC于點F,以D為

        • <input id="8yym8"><source id="8yym8"></source></input>
            <button id="8yym8"></button>
            <table id="8yym8"></table>

            DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

            則D(0,0,0),P(0,0,),

            E(),B=(

            設(shè)上平面PAB的一個法向量,

            則由

            這時,……………………6分

            顯然,是平面ABC的一個法向量.

            ∴二面角P―AB―C的大小是……………………8分

            (3)解:

            設(shè)平面PBC的一個法向量,

            是平面PBC的一個法向量……………………10分

            ∴點E到平面PBC的距離為………………12分

            19.解:

            20.解(1)由已知,拋物線,焦點F的坐標(biāo)為F(0,1)………………1分

            當(dāng)l與y軸重合時,顯然符合條件,此時……………………3分

            當(dāng)l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點()設(shè)l的斜率為k,則直線l的方程為

            由已知可得………5分

            解得無意義.

            因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

            (2)由已知可設(shè)直線l的方程為……………………8分

            則AB所在直線為……………………9分

            代入拋物線方程………………①

            的中點為

            代入直線l的方程得:………………10分

            又∵對于①式有:

            解得m>-1,

            l在y軸上截距的取值范圍為(3,+)……………………12分

            21.解:(1)在………………1分

            當(dāng)兩式相減得:

            整理得:……………………3分

            當(dāng)時,,滿足上式,

            (2)由(1)知

            ………………8分

            ……………………………………………12分

            22.解:(1)…………………………1分

            是R上的增函數(shù),故在R上恒成立,

            在R上恒成立,……………………2分

            …………3分

            故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

            ∴當(dāng)

            的最小值………………6分

            亦是R上的增函數(shù)。

            故知a的取值范圍是……………………7分

            (2)……………………8分

            ①當(dāng)a=0時,上單調(diào)遞增;…………10分

            可知

            ②當(dāng)

            即函數(shù)上單調(diào)遞增;………………12分

            ③當(dāng)時,有,

            即函數(shù)上單調(diào)遞增!14分

             


            同步練習(xí)冊答案
            <button id="8yym8"></button>