(1)求數(shù)列的通項公式. 查看更多

 

題目列表(包括答案和解析)





⑴求數(shù)列的通項公式;
⑵設,若恒成立,求實數(shù)的取值范圍;
⑶是否存在以為首項,公比為的數(shù)列,使得數(shù)列中每一項都是數(shù)列中不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,說明理由

查看答案和解析>>

求數(shù)列…的通項公式.

 

查看答案和解析>>

求數(shù)列…的通項公式.

 

查看答案和解析>>

求數(shù)列的通項公式:

1{an}中,a12,an13an2;

(2)  {an}中,a12,a25,且an23an12an0

 

查看答案和解析>>

求數(shù)列的通項公式,并求前n項和.

查看答案和解析>>

 

第Ⅰ卷(選擇題  共60分)

一、選擇題

<source id="yan9d"></source>
<td id="yan9d"><optgroup id="yan9d"><th id="yan9d"></th></optgroup></td>
  • 20080422

    第Ⅱ卷(非選擇題  共90分)

    二、填空題

    13.2    14.3   15.   16.①③④

    三、解答題

    17.解:(1)由正弦定理得,…………………………………….….3分

       ,,因此!.6分

    (2)的面積,,………..8分

    ,所以由余弦定理得….10分

    !.12分

    文本框:  18.方法一:                

    (1)證明:連結BD,

    ∵D分別是AC的中點,PA=PC=

    ∴PD⊥AC,

    ∵AC=2,AB=,BC=

    ∴AB2+BC2=AC2,

    ∴∠ABC=90°,即AB⊥BC.…………2分

    ∴BD=,

    ∵PD2=PA2―AD2=3,PB

    ∴PD2+BD2=PB2,

    ∴PD⊥BD,

    ∵ACBD=D

    ∴PD⊥平面ABC.…………………………4分

    (2)解:取AB的中點E,連結DE、PE,由E為AB的中點知DE//BC,

    ∵AB⊥BC,

    ∴AB⊥DE,

    ∵DE是直線PE的底面ABC上的射景

    ∴PE⊥AB

    ∴∠PED是二面角P―AB―C的平面角,……………………6分

    在△PED中,DE=∠=90°,

    ∴tan∠PDE=

    ∴二面角P―AB―C的大小是

    (3)解:設點E到平面PBC的距離為h.

    ∵VP―EBC=VE―PBC,

    ……………………10分

    在△PBC中,PB=PC=,BC=

    而PD=

    ∴點E到平面PBC的距離為……………………12分

    方法二:

    (1)同方法一:

    (2)解:解:取AB的中點E,連結DE、PE,

    過點D作AB的平行線交BC于點F,以D為

    <td id="yan9d"><tr id="yan9d"></tr></td>
      <style id="yan9d"></style>
    • DP為z軸,建立如圖所示的空間直角坐標系.

      則D(0,0,0),P(0,0,),

      E(),B=(

      上平面PAB的一個法向量,

      則由

      這時,……………………6分

      顯然,是平面ABC的一個法向量.

      ∴二面角P―AB―C的大小是……………………8分

      (3)解:

      平面PBC的一個法向量,

      是平面PBC的一個法向量……………………10分

      ∴點E到平面PBC的距離為………………12分

      19.解:

      20.解(1)由已知,拋物線,焦點F的坐標為F(0,1)………………1分

      l與y軸重合時,顯然符合條件,此時……………………3分

      l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當且僅當直線l通過點()設l的斜率為k,則直線l的方程為

      由已知可得………5分

      解得無意義.

      因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

      (2)由已知可設直線l的方程為……………………8分

      則AB所在直線為……………………9分

      代入拋物線方程………………①

      的中點為

      代入直線l的方程得:………………10分

      又∵對于①式有:

      解得m>-1,

      l在y軸上截距的取值范圍為(3,+)……………………12分

      21.解:(1)在………………1分

      兩式相減得:

      整理得:……………………3分

      時,,滿足上式,

      (2)由(1)知

      ………………8分

      ……………………………………………12分

      22.解:(1)…………………………1分

      是R上的增函數(shù),故在R上恒成立,

      在R上恒成立,……………………2分

      …………3分

      故函數(shù)上單調遞減,在(-1,1)上單調遞增,在(1,+)上單調遞減!5分

      ∴當

      的最小值………………6分

      亦是R上的增函數(shù)。

      故知a的取值范圍是……………………7分

      (2)……………………8分

      ①當a=0時,上單調遞增;…………10分

      可知

      ②當

      即函數(shù)上單調遞增;………………12分

      ③當時,有,

      即函數(shù)上單調遞增!14分

       


      同步練習冊答案