已知點.直線.點B是l上的動點. 過點B垂直于y軸的直線與線段BM的垂直平分線交于點P.則點P的軌跡是 A.直線 B. 橢圓 C. 雙曲線的一支 D. 拋物線 查看更多

 

題目列表(包括答案和解析)

已知點,直線l:,點B是l上的動點,若過B垂直于y軸的直線與線段BF的垂直平分線交于點M,則點M的軌跡方程是   

查看答案和解析>>

已知點,直線l:,點B是直線l上的動點,若過B垂直于y軸的直線與線段BF的垂直平分線交于點M,則點M所在曲線是( )
A.圓
B.橢圓
C.雙曲線
D.拋物線

查看答案和解析>>

已知點,直線l:,點B是直線l上的動點,若過B垂直于y軸的直線與線段BF的垂直平分線交于點M,則點M所在曲線是( )
A.圓
B.橢圓
C.雙曲線
D.拋物線

查看答案和解析>>

(09年崇文區(qū)期末)已知點,直線,點Bl上的動點, 過點B垂直于y軸的直線與線段BM的垂直平分線交于點P,則點P的軌跡是                                               

    (A)拋物線                   (B)橢圓            (C)雙曲線的一支     (D)直線

查看答案和解析>>

已知點F,直線lx=-,點Bl上的動點.若過B垂直于y軸的直線與線段BF的垂直平分線交于點M,則點M的軌跡是(  )

A.雙曲線               B.橢圓

C.圓                   D.拋物線

查看答案和解析>>

1-5  ACADC。 6-10   ACABB    11-12 DA

13. 28    14.      15. -4n+5 ;       16. ①③④

17.(1),,即,

       ,, ,

       ,∴.                                  5分

  

18.解法一:證明:連結OC,

.   ----------------------------------------------------------------------------------1分

,

       ∴ .                ------------------------------------------------------2分

中,     

   ------------------3分

             

.  ----------------------------4分

       (II)過O作,連結AE,

       ,

∴AE在平面BCD上的射影為OE.

.  -----------------------------------------7分

中,,,,   

       ∴

       ∴二面角A-BC-D的大小為.   ---------------------------------------------------8分

       (III)解:設點O到平面ACD的距離為

,

 ∴

中, ,

            

,∴

         ∴點O到平面ACD的距離為.--------------------------------12分

        解法二:(I)同解法一.

       (II)解:以O為原點,如圖建立空間直角坐標系,

則     

       ,

.  ------------6分

設平面ABC的法向量,

,,

夾角為,則

∴二面角A-BC-D的大小為. --------------------8分

       (III)解:設平面ACD的法向量為,又,

       .   -----------------------------------11分

夾角為

   則     -       設O 到平面ACD的距離為h,

,∴O到平面ACD的距離為.  ---------------------12分

 

19.(Ⅰ)解:設“從甲盒內取出的2個球均為黑球”為事件,“從乙盒內取出的2個球均為黑球”為事件.由于事件相互獨立,且,

故取出的4個球均為黑球的概率為.…….6分

(Ⅱ)解:設“從甲盒內取出的2個球均為黑球;從乙盒內取出的2個球中,1個是紅球,1個是黑球”為事件,“從甲盒內取出的2個球中,1個是紅球,1個是黑球;從乙盒內取出的2個球均為黑球”為事件.由于事件互斥,

,

故取出的4個球中恰有1個紅球的概率為...12分

20. 解:(Ⅰ)由已知,當時,   ……………… 2分

,得,∴p=…………….4分

.……………… 6分

(Ⅱ)由(1)得,.       ……………… 7分

2  ;              ①

.    ②  ………9分

②-①得,

.       ………………12分

21.解(I)

(II)

時,是減函數,則恒成立,得

 

22.解(I)設

                   

(3分)

 

 (Ⅱ)(1)當直線的斜率不存在時,方程為

      

       …………(4分)

  (2)當直線的斜率存在時,設直線的方程為,

       設,

      ,得

       …………(6分)

      

      

…………………8分

                                      ………………….9分

注意也可用..........12分

 

 

 

 

 

 

 

 

 

 


同步練習冊答案