解得 ∴公共弦所在直線恒過定點 ----------12分 查看更多

 

題目列表(包括答案和解析)

圓C1:x2+y2=1與圓C2:x2+y2-2x-2y+1=0的公共弦所在直線被圓C3(x-1)2+(y-1)2=
254
所截得的弦長是
 

查看答案和解析>>

已知圓C1:x2+y2+D1x+8y-8=0,圓C2:x2+y2+D2x-4y-2=0.
(1)若D1=2,D2=-4,求圓C1與圓C2的公共弦所在的直線l1的方程;
(2)在(1)的條件下,已知P(-3,m)是直線l1上一點,過點P分別作直線與圓C1、圓C2相切,切點為A、B,求證:|PA|=|PB|;
(3)將圓C1、圓C2的方程相減得一直線l2:(D1-D2)x+12y-6=0.Q是直線l2上,且在圓C1、圓C2外部的任意一點.過點Q分別作直線QM、QN與圓C1、圓C2相切,切點為M、N,試探究|QM|與|QN|的關系,并說明理由.

查看答案和解析>>

圓C1:x2+y2=1與圓C2:x2+y2-2x-2y+1=0的公共弦所在直線被圓C3所截得的弦長是   

查看答案和解析>>

圓C1:x2+y2=1與圓C2:x2+y2-2x-2y+1=0的公共弦所在直線被圓C3所截得的弦長是   

查看答案和解析>>

已知圓C1:x2+y2+2x-6y+1=0,圓C2:x2+y2-4x+2y-11=0,求兩圓的公共弦所在的直線方程及公共弦長.

活動:學生審題,思考并交流,探討解題的思路,教師及時提示引導,因兩圓的交點坐標同時滿足兩個圓方程,聯(lián)立方程組,消去x2項、y2項,即得兩圓的兩個交點所在的直線方程,利用勾股定理可求出兩圓公共弦長.

查看答案和解析>>


同步練習冊答案