給出下列四個命題: 查看更多

 

題目列表(包括答案和解析)

給出下列四個命題:
①若a>b>0,c>d>0,那么
a
d
b
c
;
②已知a、b、m都是正數(shù),并且a<b,則
a+m
b+m
a
b
;
③若a、b∈R,則a2+b2+5≥2(2a-b);
④2-3x-
4
x
的最大值是2-4
3

⑤原點與點(2,1)在直線y-3x+
1
2
=0
的異側(cè).
其中正確命題的序號是
 
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

給出下列四個命題:①命題“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;②若a,b∈[0,1],則不等式a2+b2
1
4
成立的概率是
π
4
;③函數(shù)y=log2(x2-ax+2)在[2,+∞)上恒為正,則實數(shù)a的取值范圍是(-∞,
5
2
)
.其中真命題的序號是
 
.(填上所有真命題的序號)

查看答案和解析>>

16、給出下列四個命題:
①已知集合A⊆{1,2,3,4},且A中至少含有一個奇數(shù),則這樣的集合A有12個;
②任意的三角形ABC中,有cos2A<cos2B的充要條件是A>B;
③平面上n個圓最多將平面分成2n2-4n+4個部分;
④空間中直角在一個平面上的正投影可以是鈍角;
其中真命題的序號是
①②
(要求寫出所有真命題的序號).

查看答案和解析>>

給出下列四個命題:
①若|x-lgx|<x+|lgx|成立,則x>1;
②拋物線y=2x2的焦點坐標(biāo)是(
1
2
,0)
;
③已知|
a
|=|
b
|=2
,
a
b
的夾角為
π
3
,則
a
+
b
a
上的投影為3;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
處取得最小值,則f(
2
-x)=-f(x)
;.
其中正確命題的序號是
 

查看答案和解析>>

1、給出下列四個命題:1)若z∈C,則z2≥0; 2)2i-1虛部是2i; 3)若a>b,則a+i>b+i;4)若z1,z2∈C,且z1>z2,則z1,z2為實數(shù);其中正確命題的個數(shù)為( 。

查看答案和解析>>

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

C

B

B

C

D

C

A

C

D

A

二、填空題:

13.           14.         15.     2個      16.       

三、解答題:

17.解:(1)

               ……………………3分

又         即 

                            …………………5分

(2)    

又  的充分條件        解得     ………12分

18.由題意知,在甲盒中放一球概率為時,在乙盒中放一球的概率為  …2分

①當(dāng)時,,的概率為               ………4分

②當(dāng)時,,又,所以的可能取值為0,2,4

(?)當(dāng)時,有,,它的概率為    ………6分

(?)當(dāng) 時,有 , ,

它的概率為

(?)當(dāng)時,有

     它的概率為

的分布列為

  

0

2

4

P

 

 的數(shù)學(xué)期望        …………12分

19.解:(1) 連接 于點E,連接DE, ,

 四邊形 為矩形, 點E為 的中點,

       平面                 ……………6分

(2)作于F,連接EF

,D為AB中點,,

     EF為BE在平面內(nèi)的射影

為二面角的平面角.

設(shè)     

二面角的余弦值  ………12分

20.(1)據(jù)題意的

                        ………4分

                      ………5分

(2)由(1)得:當(dāng)時,

    

     當(dāng)時,,為增函數(shù)

    當(dāng)時,為減函數(shù)

當(dāng)時,      …………………………8分

當(dāng)時,

當(dāng)時,

當(dāng)時,                   …………………………10分

綜上知:當(dāng)時,總利潤最大,最大值為195  ………………12分

21.解:(1)由橢圓定義可得,由可得

,而

解得                                   ……………………4分

(2)由,得,

解得(舍去)     此時

當(dāng)且僅當(dāng)時,得最小值,

此時橢圓方程為         ………………………………………8分

(3)由知點Q是AB的中點

設(shè)A,B兩點的坐標(biāo)分別為,中點Q的坐標(biāo)為

,兩式相減得

      AB的中點Q的軌跡為直線

且在橢圓內(nèi)的部分

又由可知,所以直線NQ的斜率為,

方程為

①②兩式聯(lián)立可求得點Q的坐標(biāo)為

點Q必在橢圓內(nèi)          解得

              …………………………………12分

22.解:(1)由,得

,有

 

(2)證明:

為遞減數(shù)列

當(dāng)時,取最大值          

由(1)中知     

綜上可知

(3)

欲證:即證

,構(gòu)造函數(shù)

當(dāng)時,

函數(shù)內(nèi)遞減

內(nèi)的最大值為

當(dāng)時,

       

不等式成立

 

 


同步練習(xí)冊答案