已知△ABC的三個頂點在同一球面上.∠BAC=900.AB=AC=2.若球心O到平面ABC的距離為1.則該球的表面積為 查看更多

 

題目列表(包括答案和解析)

已知△ABC的三個頂點在同一球面上,若∠BAC=90°,AB=AC=2,球心O到平面ABC的距離為1,則該球的半徑為
3
3

查看答案和解析>>

已知△ABC的三個頂點在同一球面上,若∠BAC=90°,AB=AC=2,球心O到平面ABC的距離為1,則該球的球面面積為( 。

查看答案和解析>>

已知△ABC的三個頂點在同一球面上,若∠BAC=90°,AB=AC=2,球心O到平面ABC的距離為1,則該球的半徑為        。

 

查看答案和解析>>

已知△ABC的三個頂點在同一球面上,若∠BAC=90°,AB=AC=2,球心O到平面ABC的距離為1,則該球的半徑為   

查看答案和解析>>

已知△ABC的三個頂點在同一球面上,若∠BAC=90°,AB=AC=2,球心O到平面ABC的距離為1,則該球的半徑為   

查看答案和解析>>

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

C

B

B

C

D

C

A

C

D

A

二、填空題:

13.           14.         15.     2個      16.       

三、解答題:

17.解:(1)

               ……………………3分

又         即 

                            …………………5分

(2)    

又  的充分條件        解得     ………12分

18.由題意知,在甲盒中放一球概率為時,在乙盒中放一球的概率為  …2分

①當(dāng)時,的概率為               ………4分

②當(dāng)時,,又,所以的可能取值為0,2,4

(?)當(dāng)時,有,,它的概率為    ………6分

(?)當(dāng) 時,有 , ,

它的概率為

(?)當(dāng)時,有

     它的概率為

的分布列為

  

0

2

4

P

 

 的數(shù)學(xué)期望        …………12分

19.解:(1) 連接 于點E,連接DE, ,

 四邊形 為矩形, 點E為 的中點,

       平面                 ……………6分

(2)作于F,連接EF

,D為AB中點,,

     EF為BE在平面內(nèi)的射影

為二面角的平面角.

設(shè)     

二面角的余弦值  ………12分

20.(1)據(jù)題意的

                        ………4分

                      ………5分

(2)由(1)得:當(dāng)時,

    

     當(dāng)時,,為增函數(shù)

    當(dāng)時,為減函數(shù)

當(dāng)時,      …………………………8分

當(dāng)時,

當(dāng)時,

當(dāng)時,                   …………………………10分

綜上知:當(dāng)時,總利潤最大,最大值為195  ………………12分

21.解:(1)由橢圓定義可得,由可得

,而

解得                                   ……………………4分

(2)由,得,

解得(舍去)     此時

當(dāng)且僅當(dāng)時,得最小值,

此時橢圓方程為         ………………………………………8分

(3)由知點Q是AB的中點

設(shè)A,B兩點的坐標(biāo)分別為,中點Q的坐標(biāo)為

,兩式相減得

      AB的中點Q的軌跡為直線

且在橢圓內(nèi)的部分

又由可知,所以直線NQ的斜率為,

方程為

①②兩式聯(lián)立可求得點Q的坐標(biāo)為

點Q必在橢圓內(nèi)          解得

              …………………………………12分

22.解:(1)由,得

,有

 

(2)證明:

為遞減數(shù)列

當(dāng)時,取最大值          

由(1)中知     

綜上可知

(3)

欲證:即證

,構(gòu)造函數(shù)

當(dāng)時,

函數(shù)內(nèi)遞減

內(nèi)的最大值為

當(dāng)時,

       

不等式成立

 

 


同步練習(xí)冊答案