(2)若是橢圓上的點.設(shè)的坐標(biāo)為(是已知正實數(shù)).求與之間的最短距離. 20.(14分)在世博會后.昆明世博園作為一個旅游景點吸引四方賓客.按規(guī)定旅游收入 查看更多

 

題目列表(包括答案和解析)

設(shè),是橢圓 上的兩點,已知向量mn,若mn且橢圓的離心率,短軸長為2,為坐標(biāo)原點。

(1)求橢圓的方程;

(2)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由。

 

 

查看答案和解析>>

設(shè)橢圓C:
x2
a2
+
y2
2
=1(a>0)
的左右焦點分別為F1、F2,A是橢圓C上的一點,且
AF2
F1F2
=0
,坐標(biāo)原點O到直線AF1的距離為
1
3
|OF1|

(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點,過點Q的直線l交x軸于點F(-1,0),交y軸于點M,若|MQ|=2|QF|,求直線l的斜率.

查看答案和解析>>

設(shè)橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點,從每條曲線上至少取兩個點,將其坐標(biāo)記錄于表中:
 x  3 -2  4  
2
 
3
 y -2
3
 0 -4  
2
2
-
1
2
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C1交于不同兩點M、N,且
OM
ON
=0
,請問是否存在這樣的直線l過拋物線C2的焦點F?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

以橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)
的中心O為圓心,
a2+b2
為半徑的圓稱為該橢圓的“準(zhǔn)圓”.設(shè)橢圓C的左頂點為P,左焦點為F,上頂點為Q,且滿足|PQ|=2,S△OPQ=
6
2
S△OFQ
(Ⅰ)求橢圓ABC及其“準(zhǔn)圓”的方程;
(Ⅱ)若橢圓C的“準(zhǔn)圓”的一條弦ED(不與坐標(biāo)軸垂直)與橢圓C交于M、N兩點,試證明:當(dāng)OM•ON=0時,試問弦ED的長是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

設(shè)橢圓C的中心在原點,焦點在y軸上,離心率為
2
2
,其一個頂點的坐標(biāo)是(1,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若斜率為2的直線l過橢圓C在y軸正半軸上的焦點,且與該橢圓交于A、B兩點,求AB的中點坐標(biāo).

查看答案和解析>>

一、             填空題(48分)

14 2、(理)20(文) 3  4、  5  67、(理)(文)4    8、6  9 10、  11 12、

二、             選擇題(16分)

13、B    14、B   15、C   16A

三、             解答題(86分)

17、(12分)(1,則……………………… 6分)

(2………………………………………(9分)

…………………………………………………………12分)

18、(12分)(1它是有一條側(cè)棱垂直于底面的四棱錐

 

 

 

 

…………………………………………………………6分)

(注:評分注意實線、虛線;垂直關(guān)系;長度比例等)

2)由題意,,則

,

需要3個這樣的幾何體可以拼成一個棱長為6的正方體12分)

19、(14分)

(1)拋物線的焦點為(1,0……………………………………………………2分)

設(shè)橢圓方程為,則

∴橢圓方程為……………………………………………6分)

(2)設(shè),則

  ………………8分)

①     當(dāng)時,,即時,;

②     當(dāng)時,,即時,

綜上,……………………………………14分)

(注:也可設(shè)解答,參照以上解答相應(yīng)評分)

20、(14分)

1)設(shè)當(dāng)天的旅游收入為L,由

……………………………(2分)

,知…………………………………………(4分)

,

即當(dāng)天的旅游收入是20萬到60萬。……………………………………………(7分)

(2)則每天的旅游收入上繳稅收后不低于220000

  )得

  )得;

………………………………………………………………………(11分)

代入可得

即每天游客應(yīng)不少于1540人。……………………………………………………(14分)

21、(16分)

(1)     ,得(4分)

(2)     ,得

,所以是不唯一的。…………………………………10分)

(3,

…………………………………………12分)

(文)………………………………………………………………………………16分)

(理)一般地,對任意復(fù)數(shù),有。

證明:設(shè),

,

。…………………………………………………16分)

22、(18分)

1 ………………………………………………………………6分)

(2)由解得

解得…………………………………12分)

(3)     ,

,

當(dāng)時,,,

對于時,,命題成立!14分)

以下用數(shù)學(xué)歸納法證明,且時,都有成立

假設(shè)時命題成立,即,

那么時,命題也成立。

存在滿足條件的區(qū)間。………………………………18分)

 


同步練習(xí)冊答案