9已知直線及與函數(shù)的圖象的交點(diǎn)分別為.與函數(shù)的圖象的交點(diǎn)分別為.則直線與 A.平行 B.相交且交點(diǎn)在第二象限 C.相交且交點(diǎn)在第三象限 D.相交且交點(diǎn)是原點(diǎn) 查看更多

 

題目列表(包括答案和解析)

已知在平面直角坐標(biāo)系xoy中,圓C經(jīng)過(guò)函數(shù)f(x)=
13
x3+x2-3x-9(x∈R)的圖象與兩坐標(biāo)軸的交點(diǎn),C為圓心.
(1)求圓C的方程;
(2)在直線l:2x+y+19=0上有一個(gè)動(dòng)點(diǎn)P,過(guò)點(diǎn)P作圓C的兩條切線,設(shè)切點(diǎn)分別為M,N,
求四邊形PMCN面積的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知在平面直角坐標(biāo)系xoy中,圓C經(jīng)過(guò)函數(shù)f(x)=
1
3
x3+x2-3x-9(x∈R)的圖象與兩坐標(biāo)軸的交點(diǎn),C為圓心.
(1)求圓C的方程;
(2)在直線l:2x+y+19=0上有一個(gè)動(dòng)點(diǎn)P,過(guò)點(diǎn)P作圓C的兩條切線,設(shè)切點(diǎn)分別為M,N,
求四邊形PMCN面積的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知在平面直角坐標(biāo)系xoy中,圓C經(jīng)過(guò)函數(shù)f(x)=x3+x2-3x-9(x∈R)的圖象與兩坐標(biāo)軸的交點(diǎn),C為圓心.
(1)求圓C的方程;
(2)在直線l:2x+y+19=0上有一個(gè)動(dòng)點(diǎn)P,過(guò)點(diǎn)P作圓C的兩條切線,設(shè)切點(diǎn)分別為M,N,
求四邊形PMCN面積的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

一、選擇題(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空題(4分x 4=16分)

13.80  14.32  15.  16.①③

三、解答題(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期為 …………………6分

(2)∵成等比數(shù)列   ∴  又

  ……………………………………4分

又∵     ∴       ……………………………………………………10分

  ……………………………………12分

18.解:(1)設(shè)公差成等比數(shù)列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

………………………………………………6分

(2) ∵               ………………………………………………7分

…①      …………8分

 …………②       …………9分

①-②得:

            

                ………………………………………………12分

19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,

                ……………………………………………………4分

(2)設(shè)符合題設(shè)條件,抽取次數(shù)恰為3的事件記為B,則

        ………………………………………………12分

20.解:(1)連結(jié)    為正△ …1分

                  

                                       3分

          

 

即點(diǎn)的位置在線段的四等分點(diǎn)且靠近處  ………………………………………6分

(2)過(guò),連

由(1)知(三垂線定理)

為二面角的平面角……9分

   

   

中,

中,

∴二面角的大小為     ………………………………………12分

(說(shuō)明:若用空間向量解,請(qǐng)參照給分)

21.解:(1) ……2分

①當(dāng)時(shí),內(nèi)是增函數(shù),故無(wú)最小值………………………3分

②當(dāng)時(shí),

 

 

 

 

處取得極小值    ………………………5分

   

由                     解得:  ∴ …………6分

(2)由(1)知在區(qū)間上均為增函數(shù)

,故要在內(nèi)為增函數(shù)

                  

必須:                或                    ………………………………………10分

                 

  ∴實(shí)數(shù)的取值范圍是:…………………12分

22.解:(1)如圖,設(shè)為橢圓的下焦點(diǎn),連結(jié)

…3分

  ∴ ………4分

的離心率為

 …………………………………………………………6分

(2)∵,∴拋物線方程為:設(shè)點(diǎn)

點(diǎn)處拋物線的切線斜率 ……………………………………………………8分

則切線方程為:……………………………………………………9分

又∵過(guò)點(diǎn)  ∴  ∴  ∴

代入橢圓方程得:    ……………………………………………………11分

  ………………13分

                  

當(dāng)且僅當(dāng)                 即           上式取等號(hào)

                    

∴此時(shí)橢圓的方程為:       ………………………………………………14分

 

 

 

 


同步練習(xí)冊(cè)答案