題目列表(包括答案和解析)
已知A與B是集合{1,2,3,…,100}的兩個(gè)子集,滿足:A與B的元素個(gè)數(shù)相同,且為A∩B空集。若n∈A時(shí)總有2n+2∈B,則集合A∪B的元素個(gè)數(shù)最多為( )
A. 62 B. 66 C. 68 D. 74
已知函數(shù)滿足對任意實(shí)數(shù)都有成立,且當(dāng)時(shí),,.
(1)求的值;
(2)判斷在上的單調(diào)性,并證明;
(3)若對于任意給定的正實(shí)數(shù),總能找到一個(gè)正實(shí)數(shù),使得當(dāng)時(shí),,則稱函數(shù)在處連續(xù)。試證明:在處連續(xù).
已知函數(shù)f(x)的定義域?yàn)閇-3,+∞),且f(6)=2。f′(x)為f(x)的導(dǎo)函數(shù),f′(x)的圖象如圖所示.若正數(shù)a,b滿足f(2a+b)<2,則的取值范圍是( )
A. ∪(3,+∞) B.
C. ∪(3,+∞) D.
已知集合的元素全為實(shí)數(shù),且滿足:若,則。
(1)若,求出中其它所有元素;
(2)0是不是集合中的元素?請你設(shè)計(jì)一個(gè)實(shí)數(shù),再求出中的所有元素?
(3)根據(jù)(1)(2),你能得出什么結(jié)論。
已知函數(shù)f(x)滿足f(1)=a,且,若對任意的,總有f(n+3)=f(n)成立,則a在內(nèi)的可能值有( )個(gè)。
(A)4 (B) 3 (C) 2 (D)1
一、選擇題(5分×12=60分)
B B D D C B B D D C A A
二、填空題(4分x 4=16分)
13.80 14.32 15. 16.①③
三、解答題(12分×5+14分=74分)
17.解:(1)2分
……………………4分
∴的最小正周期為 …………………6分
(2)∵成等比數(shù)列 ∴ 又
∴ ……………………………………4分
又∵ ∴ ……………………………………………………10分
……………………………………12分
18.解:(1)設(shè)公差由成等比數(shù)列得 …………………1分
∴即 ∴舍去或 …………………………3分
∴ ………………………………………………4分
∴ ………………………………………………6分
(2) ∵ ………………………………………………7分
∴…① …………8分
…………② …………9分
①-②得:
∴ ………………………………………………12分
19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,
……………………………………………………4分
(2)設(shè)符合題設(shè)條件,抽取次數(shù)恰為3的事件記為B,則
………………………………………………12分
20.解:(1)連結(jié) 為正△ …1分
面3分
面面
即點(diǎn)的位置在線段的四等分點(diǎn)且靠近處 ………………………………………6分
(2)過作于,連
由(1)知面(三垂線定理)
∴為二面角的平面角……9分
在中,
在中,
∴二面角的大小為 ………………………………………12分
(說明:若用空間向量解,請參照給分)
21.解:(1) 由得 ……2分
①當(dāng)時(shí),在內(nèi)是增函數(shù),故無最小值………………………3分
②當(dāng)時(shí),
在處取得極小值 ………………………5分
由 解得:≤ ∴≤ …………6分
≥
(2)由(1)知在區(qū)間上均為增函數(shù)
又,故要在內(nèi)為增函數(shù)
≤ ≥
必須: 或 ………………………………………10分
≤ ≤
∴≤或≥ ∴實(shí)數(shù)的取值范圍是:…………………12分
22.解:(1)如圖,設(shè)為橢圓的下焦點(diǎn),連結(jié)
∴ ∵∴…3分
∵ ∴ ………4分
∴的離心率為
…………………………………………………………6分
(2)∵,∴拋物線方程為:設(shè)點(diǎn)則 ∵
∴點(diǎn)處拋物線的切線斜率 ……………………………………………………8分
則切線方程為:……………………………………………………9分
又∵過點(diǎn) ∴ ∴ ∴
代入橢圓方程得: ……………………………………………………11分
∴≥ ………………13分
當(dāng)且僅當(dāng) 即 上式取等號
∴此時(shí)橢圓的方程為: ………………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com