17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a,

    D、E分別為棱AB、BC的中點, M為棱AA1­上的點,二面角MDEA為30°.

   (1)求MA的長;w.w.w.k.s.5.u.c.o.m      

   (2)求點C到平面MDE的距離。

查看答案和解析>>

(本小題滿分12分)某校高2010級數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。

(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙兩人不相鄰的站法有多少種?

(3)求甲不站最左端且乙不站最右端的站法有多少種 ?

查看答案和解析>>

(本小題滿分12分)

某廠有一面舊墻長14米,現(xiàn)在準備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費用為a元;②修1米舊墻的費用為元;③拆去1米舊墻,用所得材料建1米新墻的費用為元,經(jīng)過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長;(2)矩形廠房利用舊墻的一面邊長x≥14.問如何利用舊墻,即x為多少米時,建墻費用最省?(1)、(2)兩種方案哪個更好?

 

查看答案和解析>>

(本小題滿分12分)

已知a,b是正常數(shù), ab, xy(0,+∞).

   (1)求證:,并指出等號成立的條件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時相應(yīng)的x 的值.

查看答案和解析>>

(本小題滿分12分)

已知a=(1,2), b=(-2,1),xab,y=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR ,x?y=5,求證k≥1.

查看答案和解析>>

一、選擇題(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空題(4分x 4=16分)

13.80  14.32  15.  16.①③

三、解答題(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期為 …………………6分

(2)∵成等比數(shù)列   ∴  又

  ……………………………………4分

又∵     ∴       ……………………………………………………10分

  ……………………………………12分

18.解:(1)設(shè)公差成等比數(shù)列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

………………………………………………6分

(2) ∵               ………………………………………………7分

…①      …………8分

 …………②       …………9分

①-②得:

            

                ………………………………………………12分

19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,

                ……………………………………………………4分

(2)設(shè)符合題設(shè)條件,抽取次數(shù)恰為3的事件記為B,則

        ………………………………………………12分

20.解:(1)連結(jié)    為正△ …1分

                  

                                       3分

          

 

即點的位置在線段的四等分點且靠近處  ………………………………………6分

(2)過,連

由(1)知(三垂線定理)

為二面角的平面角……9分

   

   

中,

中,

∴二面角的大小為     ………………………………………12分

(說明:若用空間向量解,請參照給分)

21.解:(1) ……2分

①當時,內(nèi)是增函數(shù),故無最小值………………………3分

②當時,

 

 

 

 

處取得極小值    ………………………5分

   

由                     解得:  ∴ …………6分

(2)由(1)知在區(qū)間上均為增函數(shù)

,故要在內(nèi)為增函數(shù)

                  

必須:                或                    ………………………………………10分

                 

  ∴實數(shù)的取值范圍是:…………………12分

22.解:(1)如圖,設(shè)為橢圓的下焦點,連結(jié)

…3分

  ∴ ………4分

的離心率為

 …………………………………………………………6分

(2)∵,∴拋物線方程為:設(shè)點

點處拋物線的切線斜率 ……………………………………………………8分

則切線方程為:……………………………………………………9分

又∵過點  ∴  ∴  ∴

代入橢圓方程得:    ……………………………………………………11分

  ………………13分

                  

當且僅當                 即           上式取等號

                    

∴此時橢圓的方程為:       ………………………………………………14分

 

 

 

 


同步練習(xí)冊答案