的取值范圍即區(qū)域內(nèi)的點與連線的斜率的取值范圍. 查看更多

 

題目列表(包括答案和解析)

某試驗對象的取值范圍是區(qū)間內(nèi)的整數(shù),現(xiàn)采用分數(shù)法進行優(yōu)選,則第一個試點值可以是         。

 

查看答案和解析>>

設(shè)不等式組
x>0
y>0
y≤-nx+3n
所表示的平面區(qū)域為Dn,記Dn內(nèi)的格點(格點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為f(n),(n∈N*
(1)求f(1),f(2)的值及f(n)的表達式;
(2)記Tn=
f(n)•f(n+1)
2n
,試比較Tn與Tn+1的大。蝗魧τ谝磺械恼麛(shù)n,總有Tn≤m成立,求實數(shù)m的取值范圍;
(3)設(shè)Sn為數(shù)列bn的前n項的和,其中bn=2f(n),問是否存在正整數(shù)n,t,使
Sn+tbn
Sn+1-tbn+1
1
16
成立?若存在,求出正整數(shù)n,t;若不存在,說明理由.

查看答案和解析>>

(2006•宣武區(qū)一模)設(shè)不等式組
x>0
y>0
y≤-nx+3n
所表示的平面區(qū)域為Dn,記Dn內(nèi)的整點個數(shù)為an(n∈N*).(整點即橫坐標和縱坐標均為整數(shù)的點)
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記數(shù)列{an}的前n項和為Sn,且Tn=
Sn
3•2n-1
,若對于一切的正整數(shù)n,總有Tn≤m,求實數(shù)m的取值范圍.

查看答案和解析>>

已知x、y滿足
y>0
x+y+1<0
3x+y+9>0
記點(x,y)對應(yīng)的平面區(qū)域為P.
(Ⅰ)設(shè)z=
y+1
x+3
,求z的取值范圍;
(Ⅱ)過點(-5,1)的一束光線,射到x軸被反射后經(jīng)過區(qū)域P,當反射光線所在直線l經(jīng)過區(qū)域P內(nèi)的整點(即橫縱坐標均是整數(shù)的點)時,求直線l的方程.

查看答案和解析>>

如圖,現(xiàn)有一個以∠AOB為圓心角、湖岸OA與OB為半徑的扇形湖面AOB.現(xiàn)欲在弧AB上取不同于A,B的點C,用漁網(wǎng)沿著弧AC(弧AC在扇形AOB的弧AB上)、半徑OC和線段CD(其中CD∥OA),在該扇形湖面內(nèi)隔出兩個養(yǎng)殖區(qū)域--養(yǎng)殖區(qū)域Ⅰ和養(yǎng)殖區(qū)域Ⅱ.若OA=1cm,∠AOB=
π3
,∠AOC=θ.
(1)用θ表示CD的長度;
(2)求所需漁網(wǎng)長度(即圖中弧AC、半徑OC和線段CD長度之和)的取值范圍.

查看答案和解析>>


同步練習冊答案