18.根據(jù)濰坊市2006年第一季度勞動力市場職業(yè)供求狀況分析.其中10個職業(yè)的需求人數(shù)的數(shù)據(jù)表格如下:職業(yè)紡織工車工電子元器件制造工電焊工保險業(yè)務(wù)人員行政辦公人員財會人員文秘.打字員衛(wèi)生職業(yè)技術(shù)人員計算機操作員需求人數(shù)16312387513312191145求職人數(shù)71532922204952371514 查看更多

 

題目列表(包括答案和解析)

(本小題滿分6分,請在下列兩個小題中,任選其一完成即可)
(1)解方程:x2+3x-2=0;
(2)如圖,在邊長為1個單位長度的正方形方格紙中建立直角坐標(biāo)系,△ABC各頂點的坐標(biāo)為:A(-5,4)、B(-1,1)、C(-5,1).
①將△ABC繞著原點O順時針旋轉(zhuǎn)90°得到△A′B′C′,請在圖中畫出△A′B′C′;
②寫出A′點的坐標(biāo).

查看答案和解析>>

加試題(本小題滿分20分,其中(1)、(2)、(3)題各3分,(4)題11分)
(1)一個正數(shù)的平方根為3-a和2a+3,則這個正數(shù)是
81
81

(2)若x2+2x+y2-6y+10=0,則xy=
-1
-1

(3)已知a,b分別是6-
13
的整數(shù)部分和小數(shù)部分,則2a-b=
13
13

(4)閱讀下面的問題,并解答問題:
1)如圖1,等邊△ABC內(nèi)有一點P,若點P到頂點A,B,C的距離分別為3,4,5,求∠APB的度數(shù)是多少?(請在下列橫線上填上合適的答案)
分析:由于PA,PB,PC不在同一個三角形中,為了解決本題我們可以將△ABP繞頂點A逆時針旋轉(zhuǎn)到△ACP′處,此時可以利用旋轉(zhuǎn)的特征等知識得到:
  ①∠APB=∠AP′C=∠AP′P+∠PP′C;
  ②AP=AP′,且∠PAP′=
60
60
度,所以△APP′為
等邊
等邊
三角形,則∠AP′P=
60
60
度;
  ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C為
直角
直角
三角形,則∠PP′C=
90
90
度,從而得到∠APB=
150
150
度.
 2)請你利用第1)題的解答方法,完成下面問題:
如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為邊BC上的點,且∠EAF=45°,試說明:EF2=BE2+FC2

查看答案和解析>>

(本小題滿分8分)

   某學(xué)校要在圍墻旁建一個長方形的中藥材種植實習(xí)苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD。已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.

   1.(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當(dāng)x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;

   2.(2)學(xué)校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為,且到AB、BC、AD的距離與到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(dāng)(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,清說明理由.

 

查看答案和解析>>

(本小題滿分12分)

   如圖,在平面直角坐標(biāo)系中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知,,△ABC的面積,拋物線

經(jīng)過A、B、C三點。

   1.(1)求此拋物線的函數(shù)表達式;

   2.(2)設(shè)E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;

   3.(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分10分)在△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞頂點C順時針旋轉(zhuǎn),旋轉(zhuǎn)角為(0°<<180°),得到△A1B1C

(1)如圖1,當(dāng)ABCB1時,設(shè)A1B1BC相交于點D.證明:△A1CD是等邊三角形;

(2)如圖2,連接AA1、BB1,設(shè)△ACA1和△BCB1的面積分別為S1S2

求證:S1S2=1∶3;

(3)如圖3,設(shè)AC的中點為E,A1B1的中點為P,ACa,連接EP.當(dāng)等于多少度時,EP的長度最大,最大值是多少?

 

查看答案和解析>>


同步練習(xí)冊答案