Ⅰ.如圖一.在正三角形中.M.N分別是AC.AB上的點(diǎn).BM與CN相交于點(diǎn)O.若. 則BM=CN. 查看更多

 

題目列表(包括答案和解析)

如圖1,在正方形ABCD中,∠ECF的兩邊分別交邊AB、AD于點(diǎn)E、F,且∠ECF=45°.

(1)①求證:BE+DF=EF;
②運(yùn)用①的結(jié)論解決下面問題:如圖2,在直角梯形ABCF中,AF∥BC(BC>AF),∠B=90°,AB=BC,E是AB上一點(diǎn),且∠FCE=45°,BE=1.5,EF=2.5,求梯形ABCF的面積;
(2)在圖1中,對(duì)角線AC、BD相交于點(diǎn)O,BD與CF分別交于點(diǎn)N,連接EN得到圖3.當(dāng)∠ECF繞點(diǎn)C旋轉(zhuǎn)時(shí),△ECN是什么特殊的三角形?請(qǐng)說明理由.

查看答案和解析>>

如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-1,0)、(3,0),現(xiàn)將線段AB向上平移2個(gè)單位,再向右平移1個(gè)單位,得到線段CD,連接AC、BD得到平行四邊形ABDC。

(1)寫出點(diǎn)C、D的坐標(biāo)并求平行四邊形ABDC的面積;
(2)如圖2,在y軸上是否存在點(diǎn)P,使連接PA、PB得到的三角形PAB的面積,若存在,求出點(diǎn)P的坐標(biāo);若不存在,試說明理由。

(3)若點(diǎn)Q在線段CD上移動(dòng)(不包括C、D兩點(diǎn)),QO與線段CD、AB所成的角∠2與∠1如圖3所示,給出下列 兩個(gè)結(jié)論:①∠2+∠1的值不變,②的值不變,其中只有一個(gè)結(jié)論是正確的,請(qǐng)你找出這個(gè)結(jié)論,并加以說明。

查看答案和解析>>

如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-1,0)、(3,0),現(xiàn)將線段AB向上平移2個(gè)單位,再向右平移1個(gè)單位,得到線段CD,連接AC、BD得到平行四邊形ABDC。

(1)寫出點(diǎn)C、D的坐標(biāo)并求平行四邊形ABDC的面積;

(2)如圖2,在y軸上是否存在點(diǎn)P,使連接PA、PB得到的三角形PAB的面積,若存在,求出點(diǎn)P的坐標(biāo);若不存在,試說明理由。

(3)若點(diǎn)Q在線段CD上移動(dòng)(不包括C、D兩點(diǎn)),QO與線段CD、AB所成的角∠2與∠1如圖3所示,給出下列 兩個(gè)結(jié)論:①∠2+∠1的值不變,②的值不變,其中只有一個(gè)結(jié)論是正確的,請(qǐng)你找出這個(gè)結(jié)論,并加以說明。

 

查看答案和解析>>

如圖1,在直角坐標(biāo)系xoy中,拋物線L:y=-x2-2x+2與y軸交于點(diǎn)C,以O(shè)C為一邊向左側(cè)作正方形OCBA上;如圖2,把正方形OCBA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α后得到正方形A1B1C1O(0°<α<90°)﹒
(1)B、C兩點(diǎn)的坐標(biāo)分別為________、________;
(2)當(dāng)tanα﹦數(shù)學(xué)公式時(shí),拋物線L的對(duì)稱軸上是否存在一點(diǎn)P,使△PB1C1為直角三角形?若存在,請(qǐng)求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)在拋物線L的對(duì)稱軸上是否存在一點(diǎn)P,使△PB1C1為等腰直角三角形?若存在,請(qǐng)直接寫出此時(shí)tanα的值;若不存在,請(qǐng)說明理由﹒

查看答案和解析>>

如圖1,在直角坐標(biāo)系xoy中,拋物線L:y=-x2-2x+2與y軸交于點(diǎn)C,以O(shè)C為一邊向左側(cè)作正方形OCBA上;如圖2,把正方形OCBA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α后得到正方形A1B1C1O(0°<α<90°)﹒
(1)B、C兩點(diǎn)的坐標(biāo)分別為______、______;
(2)當(dāng)tanα﹦時(shí),拋物線L的對(duì)稱軸上是否存在一點(diǎn)P,使△PB1C1為直角三角形?若存在,請(qǐng)求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)在拋物線L的對(duì)稱軸上是否存在一點(diǎn)P,使△PB1C1為等腰直角三角形?若存在,請(qǐng)直接寫出此時(shí)tanα的值;若不存在,請(qǐng)說明理由﹒

查看答案和解析>>


同步練習(xí)冊答案