如圖,拋物線y=
x
2-
x-12與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn).
(1)求△AOB的外接圓的面積;
(2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位沿射線AC方向運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位沿射線BA方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C處時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).問當(dāng)t為何值時(shí),以A、P、Q為頂點(diǎn)的三角形與△OAB相似?
(3)若M為線段AB上一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN平行于y軸交拋物線于點(diǎn)N.
①是否存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
②當(dāng)點(diǎn)M運(yùn)動(dòng)到何處時(shí),四邊形CBNA的面積最大?求出此時(shí)點(diǎn)M的坐標(biāo)及四邊形CBAN面積的最大值.