15.已知為正數(shù).且.如果以的長為直角邊作一個直角三角形.那么以這個直角三角形的斜邊為邊長的正方形的面積為 A.5 B.25 C.7 D.15第Ⅱ卷 綜合分析題 查看更多

 

題目列表(包括答案和解析)

已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求此拋物線的表達(dá)式;
(2)連接AC、BC,若點(diǎn)E是線段AB上的一個動點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出S是否存在最大值?若存在,請求出S的最大值,并求出此時點(diǎn)E的坐標(biāo),
(3)點(diǎn)P是拋物線對稱軸上一動點(diǎn),拋物線上是否存在一點(diǎn)Q,使得以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形?如果存在,請直接寫出Q點(diǎn)坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的作業(yè)寶正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求此拋物線的表達(dá)式;
(2)連接AC、BC,若點(diǎn)E是線段AB上的一個動點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出S是否存在最大值?若存在,請求出S的最大值,并求出此時點(diǎn)E的坐標(biāo),
(3)點(diǎn)P是拋物線對稱軸上一動點(diǎn),拋物線上是否存在一點(diǎn)Q,使得以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形?如果存在,請直接寫出Q點(diǎn)坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

精英家教網(wǎng)已知:如圖,拋物線y=ax2+bx+c經(jīng)過原點(diǎn)(0,0)和A(1,-3)、B(-1,5)三點(diǎn).
(1)求拋物線的解析式.
(2)設(shè)拋物線與x軸的另一個交點(diǎn)為C.以O(shè)C為直徑作⊙M,如果過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,且y軸的正半軸交于點(diǎn)為E,連接MD.已知點(diǎn)E的坐標(biāo)為(0,m),求四邊形EOMD的面積.(用含m的代數(shù)式表示)
(3)延長DM交⊙M于點(diǎn)N,連接ON、OD,當(dāng)點(diǎn)P在(2)的條件下運(yùn)動到什么位置時,能使得S四邊形EOMD=S△DON?請求出此時點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知:如圖,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=
k2x
的圖象相交于點(diǎn)A、B,點(diǎn)A 在第一象限,且點(diǎn)A 的橫坐標(biāo)為1,作AH垂直于x軸,垂足為點(diǎn)H,S△AOH=1.
(1)求AH的長;
(2)求這兩個函數(shù)的解析式;
(3)如果△OAC是以O(shè)A為腰的等腰三角形,且點(diǎn)C在x軸上,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

已知:如圖,拋物線y=ax2+bx+c經(jīng)過原點(diǎn)(0,0)和A(1,-3)、B(-1,5)三點(diǎn).
(1)求拋物線的解析式.
(2)設(shè)拋物線與x軸的另一個交點(diǎn)為C.以O(shè)C為直徑作⊙M,如果過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,且y軸的正半軸交于點(diǎn)為E,連接MD.已知點(diǎn)E的坐標(biāo)為(0,m),求四邊形EOMD的面積.(用含m的代數(shù)式表示)
(3)延長DM交⊙M于點(diǎn)N,連接ON、OD,當(dāng)點(diǎn)P在(2)的條件下運(yùn)動到什么位置時,能使得S四邊形EOMD=S△DON?請求出此時點(diǎn)P的坐標(biāo).

查看答案和解析>>


同步練習(xí)冊答案