解: (3)試求出一個倍角三角形的三條邊的長.使這三條邊長恰為三個連續(xù)的正整數(shù). 解: 查看更多

 

題目列表(包括答案和解析)

(2007•東城區(qū)一模)我們給出如下定義:如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c.
(1)若∠A=2∠B,且∠A=60°,求證:a2=b(b+c).
(2)如果對于任意的倍角三角形ABC(如圖),其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?請證明你的結(jié)論;
(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).

查看答案和解析>>

在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).
精英家教網(wǎng)
(2)如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.
精英家教網(wǎng)
(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).

查看答案和解析>>

在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).

查看答案和解析>>

(2005•天津)在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).

查看答案和解析>>

(2005•天津)在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).

查看答案和解析>>


同步練習(xí)冊答案