10.如下圖.矩形中.=3.=4.如果將該矩形沿對角線折疊.點到達處.與相交于點.的長是 查看更多

 

題目列表(包括答案和解析)

(遼寧省2003年中考試題)如圖,山上有一座鐵塔,山腳下有一矩形建筑物ABCD,且建筑物周圍沒有開闊平整地帶,該建筑物頂端寬度AD和高度DC都可直接測得,從A、D、C三點可看到塔頂端H,可供使用的測量工具有皮尺、測傾器.

  (1)請你根據(jù)現(xiàn)有條件,充分利用矩形建筑物,設計一個測量塔頂端到地面高度HG的方案,具體要求如下:

  ①測量數(shù)據(jù)盡可能少;

  ②在所給圖形上,畫出你設計的測量平面圖,并將應測數(shù)據(jù)標記在圖形上(如果測A、D間距離,用m表示;如果測D、C間距離,用n表示;如果測角,用aβ、γ等表示.測傾器高度不計)

  (2)根據(jù)你測量的數(shù)據(jù),計算塔頂端到地面的高度HG(用字母表示)

 

查看答案和解析>>

(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖①方法折疊,其中點A與點C重合,DE為折痕.試證明△CBE是等腰三角形;

(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個重合的矩形,其中一個是內接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;

(3)請在圖④的方格紙中畫出一個斜三角形,同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形的頂點)上;

(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內接矩形的四個頂點分別在原四邊形的四條邊上).請你進一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時,一定能折成組合矩形?

查看答案和解析>>

如圖山上有一座鐵塔,山腳下有一矩形建筑物ABCD,且建筑物周圍沒有開闊平整地帶,該建筑物頂端寬度AD和高度DC都可直接測得,從A、D、C三點可看到塔的頂點H,可供使用的測量工具有皮尺和一個測角儀.

(1)

請你根據(jù)現(xiàn)有條件,充分利用矩形建筑物,設計數(shù)種測量塔頂端到地面的高度HG的方案,在所給的圖形上畫出你設計的測量平面圖,并將應測數(shù)據(jù)標記在圖形上(如果測A、D間距離,用m表示;如果測D、C間距離,用n表示;如果測角,用α、β、γ等表示);

(2)

根據(jù)你測量的數(shù)據(jù),計算塔頂?shù)降孛娴母叨菻G(用含有所給字母的代數(shù)式表示);

(3)

在你設計的數(shù)種方案中,選出一種測量數(shù)量最少的方案作為最優(yōu)方案.

如圖用測傾儀測出∠HDM和∠HAM的度數(shù)α、γ,用皮尺量出AD和DC的長度m、n.

查看答案和解析>>

操作與探究:

(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點A與點C重合,DE為折痕.試證明△CBE等腰三角形;

(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個重合的矩形,其中一個是內接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;

(3)請你在圖④的方格紙中畫出一個斜三角形,同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形的頂點)上;

(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內接矩形的四個頂點分別在原四邊形的四條邊上).請你進一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件是,一定能折成組合矩形?

查看答案和解析>>

操作與探究:

(1)圖①是一塊直角三角形紙片。將該三角形紙片按如圖方法折疊,是點A與點C重合,DE為折痕。試證明△CBE等腰三角形;

(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②)。通過折疊,原三角形恰好折成兩個重合的矩形,其中一個是內接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為組合矩形。你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;

(3)請你在圖④的方格紙中畫出一個斜三角形,同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形的頂點)上;

(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內接矩形的四個頂點分別在原四邊形的四條邊上)。請你進一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件是,一定能折成組合矩形?

查看答案和解析>>


同步練習冊答案