題目列表(包括答案和解析)
要證,只需證,即需,即需證,即證35>11,因為35>11顯然成立,所以原不等式成立。以上證明運用了
A.比較法 B.綜合法 C.分析法 D.反證法
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域為
由,得
當x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當時,取,有,故時不合題意.當時,令,即
令,得
①當時,,在上恒成立。因此在上單調(diào)遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當時,,對于,,故在上單調(diào)遞增.因此當取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得 ,
從而
所以有
綜上,,
已知數(shù)列的前項和為,且 (N*),其中.
(Ⅰ) 求的通項公式;
(Ⅱ) 設(shè) (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當時,由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對偶式)設(shè),,
則.又,也即,所以,也即,又因為,所以.即
………10分
證法四:(數(shù)學(xué)歸納法)①當時, ,命題成立;
②假設(shè)時,命題成立,即,
則當時,
即
即
故當時,命題成立.
綜上可知,對一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.
【解析】第一問中,當時,,.結(jié)合表格和導(dǎo)數(shù)的知識判定單調(diào)性和極值,進而得到最值。
第二問中,∵,,
∴原不等式等價于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當時,,.
當在上變化時,,的變化情況如下表:
|
- |
+ |
|
||
1/e |
∴時,,.
(Ⅱ)∵,,
∴原不等式等價于:,
即, 亦即.
∴對于任意的,原不等式恒成立,等價于對恒成立,
∵對于任意的時, (當且僅當時取等號).
∴只需,即,解之得或.
因此,的取值范圍是
已知,設(shè)和是方程的兩個根,不等式對任意實數(shù)恒成立;函數(shù)有兩個不同的零點.求使“P且Q”為真命題的實數(shù)的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==.
當a∈[1,2]時,的最小值為3. 當a∈[1,2]時,的最小值為3.
要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==.
當a∈[1,2]時,的最小值為3.
要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即
解得實數(shù)m的取值范圍是(4,8]
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com