綜上.原不等式成立.12分 查看更多

 

題目列表(包括答案和解析)

要證,只需證,即需,即需證,即證35>11,因?yàn)?5>11顯然成立,所以原不等式成立。以上證明運(yùn)用了

A.比較法           B.綜合法           C.分析法           D.反證法

 

查看答案和解析>>

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對(duì)任意的成立,求實(shí)數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

,得

當(dāng)x變化時(shí),,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

,得

①當(dāng)時(shí),,上恒成立。因此上單調(diào)遞減.從而對(duì)于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時(shí),,對(duì)于,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

當(dāng)時(shí),

                      

                      

在(2)中取,得 ,

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>

已知數(shù)列的前項(xiàng)和為,且 (N*),其中

(Ⅰ) 求的通項(xiàng)公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當(dāng)時(shí),由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對(duì)偶式)設(shè),

.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                    ………10分

證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

   ②假設(shè)時(shí),命題成立,即,

   則當(dāng)時(shí),

    即

故當(dāng)時(shí),命題成立.

綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

②由于

所以,

從而.

也即

 

查看答案和解析>>

已知函數(shù)其中為自然對(duì)數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對(duì)于任意的,都有成立,求的取值范圍.

【解析】第一問(wèn)中,當(dāng)時(shí),.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。

第二問(wèn)中,∵,,      

∴原不等式等價(jià)于:,

, 亦即

分離參數(shù)的思想求解參數(shù)的范圍

解:(Ⅰ)當(dāng)時(shí),,

當(dāng)上變化時(shí),,的變化情況如下表:

 

 

1/e

時(shí),

(Ⅱ)∵,,      

∴原不等式等價(jià)于:,

, 亦即

∴對(duì)于任意的,原不等式恒成立,等價(jià)于對(duì)恒成立,

∵對(duì)于任意的時(shí), (當(dāng)且僅當(dāng)時(shí)取等號(hào)).

∴只需,即,解之得.

因此,的取值范圍是

 

查看答案和解析>>

已知,設(shè)是方程的兩個(gè)根,不等式對(duì)任意實(shí)數(shù)恒成立;函數(shù)有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實(shí)數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>


同步練習(xí)冊(cè)答案