5.如圖.△ABC為等邊三角形.過(guò)點(diǎn)B做BD⊥BC.過(guò)點(diǎn)A做AD⊥BD.垂足分別為B.D.已知等邊三角形的周長(zhǎng)為m.則AD長(zhǎng)為 查看更多

 

題目列表(包括答案和解析)

如圖,△ABC為等邊三角形,過(guò)點(diǎn)B做BD⊥BC,過(guò)點(diǎn)A做AD⊥BD,垂足分別為B、D,已知等邊三角形的周長(zhǎng)為m,則AD長(zhǎng)為(   )

A.m        B.m         C.m       D.m

查看答案和解析>>

如圖,D是等邊三角形ABC的邊BC上一點(diǎn),將△ABD繞點(diǎn)A旋轉(zhuǎn),使得旋轉(zhuǎn)后點(diǎn)B的對(duì)應(yīng)點(diǎn)為C.

(1)在圖中作出旋轉(zhuǎn)后的圖形.

(2)小明是這樣做的:過(guò)C作BA的平行線l,在l上取CE=BD,連接AE,則△ACE即為旋轉(zhuǎn)后的圖形.你能說(shuō)說(shuō)小明這樣做的道理嗎?

 

查看答案和解析>>

在平面內(nèi),先將一個(gè)多邊形以點(diǎn)O為位似中心放大或縮小,使所得多邊形與原多邊形對(duì)應(yīng)線段的比為k,并且原多邊形上的任一點(diǎn)P,它的對(duì)應(yīng)點(diǎn)在線段OP或其延長(zhǎng)線上;接著將所得多邊形以點(diǎn)O為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)一個(gè)角度,這種經(jīng)過(guò)和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為O(k,),其中點(diǎn)O叫做旋轉(zhuǎn)相似中心,k叫做相似比,叫做旋轉(zhuǎn)角.

(1)填空:

①如圖1,將△ABC以點(diǎn)A為旋轉(zhuǎn)相似中心,放大為原來(lái)的2倍,再逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,這個(gè)旋轉(zhuǎn)相似變換記為A(________,________);

②如圖2,△ABC是邊長(zhǎng)為1 cm的等邊三角形,將它作旋轉(zhuǎn)相似變換A(,90°),得到△ADE,則線段BD的長(zhǎng)為_(kāi)_______cm;

(2)如圖3,分別以銳角三角形ABC的三邊AB,BC,CA為邊向外作正方形ADEB,BFGC,CHIA,點(diǎn)O1,O2,O3分別是這三個(gè)正方形的對(duì)角線交點(diǎn),試分別利用△AO1O2與△ABI,△CIB與△CAO2之間的關(guān)系,運(yùn)用旋轉(zhuǎn)相似變換的知識(shí)說(shuō)明線段O1O2與AO2之間的關(guān)系.

查看答案和解析>>

在平面內(nèi),先將一個(gè)多邊形以點(diǎn)O為位似中心放大或縮小,使所得多邊形與原多邊形對(duì)應(yīng)線段的比為k,并且原多邊形上的任一點(diǎn)P,它的對(duì)應(yīng)點(diǎn)在線段OP或其延長(zhǎng)線上;接著將所得多邊形以點(diǎn)O為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)一個(gè)角度θ,這種經(jīng)過(guò)和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為O(k,θ),其中點(diǎn)O叫做旋轉(zhuǎn)相似中心,k叫做相似比,θ叫做旋轉(zhuǎn)角.

(1)

填空:

①如圖1,將△ABC以點(diǎn)A為旋轉(zhuǎn)相似中心,放大為原來(lái)的2倍,再逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,這個(gè)旋轉(zhuǎn)相似變換記為A(________,________);

②如圖2,△ABC是邊長(zhǎng)為1 cm的等邊三角形,將它作旋轉(zhuǎn)相似變換,得到△ADE,則線段BD的長(zhǎng)為_(kāi)_______cm;

(2)

如圖3,分別以銳角三角形ABC的三邊AB,BC,CA為邊向外作正方形ADEB,BFGC,CHIA,點(diǎn)O1,O2,O3分別是這三個(gè)正方形的對(duì)角線交點(diǎn),試分別利用△AO1O2與△ABI,△CIB與△CAO2之間的關(guān)系,運(yùn)用旋轉(zhuǎn)相似變換的知識(shí)說(shuō)明線段O1O2與AO2之間的關(guān)系.

查看答案和解析>>

(1)自主閱讀:如圖1,AD∥BC,連接AB、AC、BD、CD,則S△ABC=S△BCD
證明:分別過(guò)點(diǎn)A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因?yàn)镾△ABC=
1
2
×BC×AF,S△BCD=
1
2
×
BC×DE
所以S△ABC=S△BCD
由此我們可以得到以下的結(jié)論:像圖1這樣,
同底等高的兩三角形面積相等
同底等高的兩三角形面積相等

(2)結(jié)論證明:如果一條直線(線段)把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線(線段)稱為這個(gè)平面圖形的一條面積等分線(段),如,平行四變形的一條對(duì)角線就是平形四邊形的一條面積等分線段.
①如圖2,梯形ABCD中AB∥DC,連接AC,過(guò)點(diǎn)B作BE∥AC,交DC延長(zhǎng)線于點(diǎn)E,連接點(diǎn)A和DE的中點(diǎn)P,則AP即為梯形ABCD的面積等分線段,請(qǐng)你寫(xiě)出這個(gè)結(jié)論成立的理由:
②如圖3,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過(guò)點(diǎn)A能否做出四邊形ABCD的面積等分線(段)?若能,請(qǐng)畫(huà)出面積等分線(用鋼筆或圓珠筆畫(huà)圖,不用寫(xiě)作法),不要證明

查看答案和解析>>


同步練習(xí)冊(cè)答案