18.用兩種方法解方程:. 查看更多

 

題目列表(包括答案和解析)

利用圖象解一元二次方程時,我們采用的一種方法是:在平面直角坐標系中畫出拋物線和直線,兩圖象交點的橫坐標就是該方程的解。

(1)填空:利用圖象解一元二次方程,也可以這樣求解:在平面直角坐標系中畫出拋物線     和直線,其交點的橫坐標就是該方程的解。(4分)

(2)已知函數(shù)的圖象(如圖所示),利用圖象求方程 的近似解(結(jié)果保留兩個有效數(shù)字)

 

查看答案和解析>>

利用圖象解一元二次方程x2-2x-1=0時,我們采用的一種方法是:在直角坐標系中畫出拋物線y=x2和直線y=2x+1,兩圖象交點的橫坐標就是該方程的解。
(1)請再給出一種利用圖象求方程x2-2x-1=0的解的方法;
(2)已知函數(shù)y=x3的圖象(如圖):求方程x3-x-2=0的解。(結(jié)果保留2個有效數(shù)字)

查看答案和解析>>

利用圖象解一元二次方程x2+x-3=0時,我們采用的一種方法是:在平面直角坐標系中畫出拋物線y=x2和直線y=-x+3,兩圖象交點的橫坐標就是該方程的解。
(1)填空:利用圖象解一元二次方程x2+x-3=0,也可以這樣求解:在平面直角坐標系中畫出拋物線y=______和直線y=-x,其交點的橫坐標就是該方程的解。
(2)已知函數(shù)的圖象(如圖所示),利用圖象求方程的近似解(結(jié)果保留兩個有效數(shù)字)。

查看答案和解析>>

數(shù)形結(jié)合作為一種數(shù)學思想方法,數(shù)形結(jié)合的應用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即 “以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關系,即 “以形助數(shù)”。
如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=90°,CD⊥AB,D為垂足。易證得兩個結(jié)論:
(1)AC·BC=AB·CD;
(2)AC2=AD·AB。

                         圖1                                                       圖2
(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D為垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個根,求AD、MD的長;
(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解: 設a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)。

查看答案和解析>>

數(shù)形結(jié)合作為一種數(shù)學思想方法,數(shù)形結(jié)合的應用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即 “以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關系,即 “以形助數(shù)”。                                                             

如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個結(jié)論:(1)AC·BC = AB·CD   (2)AC2= AD·AB

(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個根,求AD、MD的長。

(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解: 設a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)

查看答案和解析>>


同步練習冊答案