22.如圖.已知△ABC的頂點坐標分別為A.(1)將A.B.C三點的橫坐標和縱坐標都乘以2.得到點A'.B'.C'.作出△A'B'C',(2)將A.B.C三點的橫坐標和縱坐標都乘以-2.得到點A''.B''.C''.作出△A''B''C'',(3)△ABC與△A'B'C'位似圖形嗎?如果是位似圖形.那么位似中心是哪一個點?位似比是多少? 查看更多

 

題目列表(包括答案和解析)

(本題滿分11分)某公園有一個拋物線形狀的觀景拱橋ABC,其橫截面如圖所示,在圖中建立的直角坐標系中,拋物線的解析式為且過頂點C(0,5)(長度單位:m)

1.(1)直接寫出c的值;

   2.(2)現(xiàn)因搞慶典活動,計劃沿拱橋的臺階表面鋪設一條寬度為1.5 m的地毯,地毯的價格為20元/m2,求購買地毯需多少元?

   3.(3)在拱橋加固維修時,搭建的“腳手架”為矩形EFGH(H、G分別在拋物線的左右測上),并鋪設斜面EG.已知矩形EFGH的周長為27.5m,求點G的坐標.

 

查看答案和解析>>

(本題滿分12分)已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點BCE)、F在同一條直線上.∠ACB = ∠EDF= 90°,∠DEF = 45°,AC =6cm,BC = 6 cm,EF = 12cm.

如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DEAC相交于點Q,連接PQ,設移動時間為t(s).解答下列問題:

(1)當t為何值時,點A在線段PQ的垂直平分線上?

(2)當t為何值時,△PQE是直角三角形?

(3)連接PE,設四邊形APEC的面積為y(cm2),求yt之間的函數(shù)關系式;是否存在某一時刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說明理由.

(4)是否存在某一時刻t,使P、QF三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由

 

查看答案和解析>>

(本題滿分11分)某公園有一個拋物線形狀的觀景拱橋ABC,其橫截面如圖所示,在圖中建立的直角坐標系中,拋物線的解析式為且過頂點C(0,5)(長度單位:m)

1.(1)直接寫出c的值;

    2.(2)現(xiàn)因搞慶典活動,計劃沿拱橋的臺階表面鋪設一條寬度為1.5 m的地毯,地毯的價格為20元/m2,求購買地毯需多少元?

    3.(3)在拱橋加固維修時,搭建的“腳手架”為矩形EFGH(H、G分別在拋物線的左右測上),并鋪設斜面EG.已知矩形EFGH的周長為27.5m,求點G的坐標.

 

查看答案和解析>>

(本題滿分12分)已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、CE)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =6cm,BC = 6 cm,EF = 12cm.

如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DEAC相交于點Q,連接PQ,設移動時間為t(s).解答下列問題:

(1)當t為何值時,點A在線段PQ的垂直平分線上?

(2)當t為何值時,△PQE是直角三角形?

(3)連接PE,設四邊形APEC的面積為y(cm2),求yt之間的函數(shù)關系式;是否存在某一時刻t,使面積y最小?若存在,求出y的最小值;若不存在,說明理由.

(4)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由

 

查看答案和解析>>

(本小題滿分9分)

如圖,已知二次函數(shù)的圖象與x軸相交于點A、C,與y軸交于點B,A(,0),且△AOB~△BOC。

(1)求C點坐標、∠ABC的度數(shù)及二次函數(shù)的關系式;

(2)在線段AC上是否存在點M(m,0),使得以線段BM為直徑的圓與邊BC交于P點(與點B不同),且以點P、C、O為頂點的三角形是等腰三角形?若存在,求出m的值;若不存在,請說明理由

 

查看答案和解析>>


同步練習冊答案