圖10 查看更多

 

題目列表(包括答案和解析)

圖10-1和圖10-2是某報(bào)紙公布的中國(guó)人口發(fā)展情況統(tǒng)計(jì)圖和2000年中國(guó)人口年齡構(gòu)成圖.請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:

1.2000年,中國(guó)60歲及以上人口數(shù)為    億,15~59歲人口數(shù)為   億(精確到0.01億)

2.預(yù)計(jì)到2050年,中國(guó)總?cè)丝跀?shù)將達(dá)到     億,60歲及以上人口數(shù)占總?cè)丝跀?shù)的    %(精確到0.1%)

3.通過(guò)對(duì)中國(guó)人口發(fā)展情況統(tǒng)計(jì)圖的分析,寫出兩條你認(rèn)為正確的結(jié)論.

 

查看答案和解析>>

圖10是小紅設(shè)計(jì)的鉆石形商標(biāo),△ABC是邊長(zhǎng)為2的等邊三角形,四邊形ACDE是等腰梯形,AC∥ED,∠EAC=60°,AE=1.

(1)證明:△ABE≌△CBD;

(2)圖中存在多對(duì)相似三角形,請(qǐng)你找出一對(duì)進(jìn)行證明,并求出其相似比(不添加輔助線,不找全等的相似三角形);

(3)小紅發(fā)現(xiàn)AM=MN=NC,請(qǐng)證明此結(jié)論;

(4)求線段BD的長(zhǎng).

 

查看答案和解析>>

(10分)圖10是小紅設(shè)計(jì)的鉆石形商標(biāo),△ABC是邊長(zhǎng)為2的等邊三角形,四邊形ACDE是等腰梯形,ACED,∠EAC=60°,AE=1.

(1)證明:△ABE≌△CBD;

(2)圖中存在多對(duì)相似三角形,請(qǐng)你找出一對(duì)進(jìn)

行證明,并求出其相似比(不添加輔助線,

不找全等的相似三角形);

(3)小紅發(fā)現(xiàn)AM=MN=NC,請(qǐng)證明此結(jié)論;

(4)求線段BD的長(zhǎng).

 

 

 

 

 

 

查看答案和解析>>

圖10是小紅設(shè)計(jì)的鉆石形商標(biāo),△ABC是邊長(zhǎng)為2的等邊三角形,四邊形ACDE是等腰梯形,AC∥ED,∠EAC=60°,AE=1

1.證明:△ABE≌△CBD;

2.圖中存在多對(duì)相似三角形,請(qǐng)你找出一對(duì)進(jìn)行證明,并求出其相似比(不添加輔助線,不找全等的相似三角形);

3.小紅發(fā)現(xiàn)AM=MN=NC,請(qǐng)證明此結(jié)論;

4.求線段BD的長(zhǎng).

 

 

查看答案和解析>>

圖10-1和圖10-2是某報(bào)紙公布的中國(guó)人口發(fā)展情況統(tǒng)計(jì)圖和2000年中國(guó)人口年齡構(gòu)成圖.請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:

【小題1】2000年,中國(guó)60歲及以上人口數(shù)為    億,15~59歲人口數(shù)為   億(精確到0.01億)
【小題2】預(yù)計(jì)到2050年,中國(guó)總?cè)丝跀?shù)將達(dá)到     億,60歲及以上人口數(shù)占總?cè)丝跀?shù)的    %(精確到0.1%)
【小題3】通過(guò)對(duì)中國(guó)人口發(fā)展情況統(tǒng)計(jì)圖的分析,寫出兩條你認(rèn)為正確的結(jié)論.

查看答案和解析>>

1. C   2. B   3.D   4.B  5.D   6.C  7. C   8. C   9.D   10.A 

11.4

12.y=2(x+3)2-7

13.

14.3

15.153

16.9800

17.解:原式=                     ………    2分

∵x≠0且x≠且x≠2                                        ………    3分

∴x=-1                                                 ……………   4分

∴原式==-                                  …………   5分

18.(1)答案不惟一,例如四個(gè)圖案具有的共同特征可以是:①都是軸對(duì)稱圖形;②面積都等于四個(gè)小正方形的面積之和;③都是直線形圖案。。。。。只要寫出兩個(gè)即可。……… 3分

(2)答案示例:


……  6分

19.已知:如圖所示,AD為ΔABC的中線,且CF⊥AD于F,BE⊥AD的延長(zhǎng)線于E.

求證;BE=CF.

證明:∵AD為ΔABC的中線。                                


∴BD=CD.                                                           ………  1分

∵BE⊥AD,CF⊥AD.

∴∠BED=∠CFD=90º .                                                ………  3分

又∠1=∠2.

∴ΔBED≌ΔCFD(AAS).                                                 ……… 5分

BE=CF                                                                ……… 7分

(本題還可以作AN⊥BC于N,利用等底等高的兩個(gè)三角形的面積相等的性質(zhì)證明)

20.(1)A品牌牙膏主要競(jìng)爭(zhēng)優(yōu)勢(shì)是質(zhì)量,①對(duì)A品牌牙膏的質(zhì)量滿意的最多;②對(duì)A品牌牙膏的廣告,價(jià)格滿意的不是最多;③對(duì)A品牌牙膏購(gòu)買的人最多  ∴ A品牌牙膏靠的是質(zhì)量?jī)?yōu)勢(shì)             ……………………………………………………………        2分

(2)廣告對(duì)用戶選擇品牌有影響,原因是:①對(duì)B,C牙膏的質(zhì)量,價(jià)格滿意的用戶,相差不大;②對(duì)B品牌的廣告,滿意的用戶比C多,相差較大;③購(gòu)買B品牌的用戶高于C.

  ∴廣告影響用戶選擇品牌 。               ………………………………….      5分

(3)首先要提高質(zhì)量,其次加大廣告力度,最后注意合理的價(jià)格!      8分

21.(1)34.5元                                    ………………………      2分

(2)35.5元,28.5元                           ………………………     4分

(3)1331.25元                                 ………………………     8分

22.羊可以吃到的草的最大面積由三部分組成:第一部分:以點(diǎn)A為圓心,12米為半徑。圓心角為60°的扇形的面積減去三角形ABC的面積;第二部分:以點(diǎn)B為圓心,6米為半徑,圓心角為60°的扇形面積;第三部分與第二部分相等。       …………………    3分

因此,羊可以吃到的草的面積是:

(平方米)     …………………  8分

23.解;根據(jù)題意易知,水柱上任意一個(gè)點(diǎn)距中心的水平距離為x,與此點(diǎn)的

高度y之間的函數(shù)關(guān)系式是:                         ...............          1分

Y=a1(x+4)2+6      (-10≤x<0 )      或  y=a2(x+4)2+6     (0≤x≤10).....   3分

由x=-10,y=0,    可得a1=-;       由x=10,   y=0,     可得a2=-  .....   5分 

于是,所求函數(shù)解析式是   Y=-(x+4)2+6      (-10≤x<0 )

                         y=-(x+4)2+6     (0≤x≤10)             ………  6分

      當(dāng)x=0時(shí),y=                                             

     所以裝飾物的高度為m                                        ………  8分

24.(1)連接O,D與B,D兩點(diǎn)。

∵ΔBDC是RtΔ, 且E為BC中點(diǎn)。

∴∠EDB=∠EBD.                                                   ………    2分

又∵OD=OB  且∠EBD+∠DBO=90°       

∴∠EDB+∠ODB=90°

∴DE是⊙O的切線;                                                ……    4分

(2)∵∠EDO=∠B=90°,若要AOED是平行四邊形,則DE∥AB,D為AC中點(diǎn)。

又∵BD⊥AC,

∴ΔABC為等腰直角三角形。

∴∠CAB=45°.                                                    ……     6分    

過(guò)E作EH⊥AC于H.

設(shè)BC=2k,

則EH=                                       ………………  8分

∴sin∠CAE=                                           ……     10分

25.(1) ?i    1                                                  …2分.

(2)①5   ②3+4i                                                  …4分

(3)已知(x+y)+3i=1-(x+y)i

可得    (x+y)+3i=(1-x)-yi                                     …5分

∴x+y=1-x     3=-y                                              …6分

∴x=2   y=-3                                                  …   8分

(4)解原式:=                 …   12分

 


同步練習(xí)冊(cè)答案