題目列表(包括答案和解析)
(13分)閱讀下列材料,并回答問(wèn)題.
畫(huà)一個(gè)直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長(zhǎng)為13,并且。事實(shí)上,在任何一個(gè)直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方。如果直角三角形中,兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,則,這個(gè)結(jié)論就是著名的勾股定理.
請(qǐng)利用這個(gè)結(jié)論,完成下面的活動(dòng):
(1)一個(gè)直角三角形的兩條直角邊分別為6、8,那么這個(gè)直角三角形斜邊長(zhǎng)為 .
(2)滿足勾股定理方程的正整數(shù)組(a,b,c)叫勾股數(shù)組。例如(3,4,5)就是一組勾股數(shù)組。觀察下列幾組勾股數(shù)
① 3, 4, 5 ; ② 5,12,13 ; ③ 7,24,25 ;④ 9,40,41 ;
請(qǐng)你寫(xiě)出有以上規(guī)律的第⑤組勾股數(shù): .
(3)如圖,AD⊥BC于D,AD=BD,AC=BE。AC=3,DC=1,求BD的長(zhǎng)度.
(4)如圖,點(diǎn)A在數(shù)軸上表示的數(shù)是 ,請(qǐng)用類似的方法在下圖數(shù)軸上畫(huà)出表示數(shù)的B點(diǎn)(保留作圖痕跡).
(13分)閱讀下列材料,并回答問(wèn)題.
畫(huà)一個(gè)直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長(zhǎng)為13,并且。事實(shí)上,在任何一個(gè)直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方。如果直角三角形中,兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,則,這個(gè)結(jié)論就是著名的勾股定理.
請(qǐng)利用這個(gè)結(jié)論,完成下面的活動(dòng):
(1)一個(gè)直角三角形的兩條直角邊分別為6、8,那么這個(gè)直角三角形斜邊長(zhǎng)為 .
(2)滿足勾股定理方程的正整數(shù)組(a,b,c)叫勾股數(shù)組。例如(3,4,5)就是一組勾股數(shù)組。觀察下列幾組勾股數(shù)
① 3, 4, 5 ; ② 5,12,13 ; ③ 7,24,25 ;④ 9,40,41 ;
請(qǐng)你寫(xiě)出有以上規(guī)律的第⑤組勾股數(shù): .
(3)如圖,AD⊥BC于D,AD=BD,AC=BE。AC=3,DC=1,求BD的長(zhǎng)度.
(4)如圖,點(diǎn)A在數(shù)軸上表示的數(shù)是 ,請(qǐng)用類似的方法在下圖數(shù)軸上畫(huà)出表示數(shù)的B點(diǎn)(保留作圖痕跡).
(13分)閱讀下列材料,并回答問(wèn)題.
畫(huà)一個(gè)直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長(zhǎng)為13,并且。事實(shí)上,在任何一個(gè)直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方。如果直角三角形中,兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,則,這個(gè)結(jié)論就是著名的勾股定理.
請(qǐng)利用這個(gè)結(jié)論,完成下面的活動(dòng):
(1)一個(gè)直角三角形的兩條直角邊分別為6、8,那么這個(gè)直角三角形斜邊長(zhǎng)為 .
(2)滿足勾股定理方程的正整數(shù)組(a,b,c)叫勾股數(shù)組。例如(3,4,5)就是一組勾股數(shù)組。觀察下列幾組勾股數(shù)
① 3, 4, 5 ; ② 5,12,13 ; ③ 7,24,25 ;④ 9,40,41 ;
請(qǐng)你寫(xiě)出有以上規(guī)律的第⑤組勾股數(shù): .
(3)如圖,AD⊥BC于D,AD=BD,AC=BE。AC=3,DC=1,求BD的長(zhǎng)度.
(4)如圖,點(diǎn)A在數(shù)軸上表示的數(shù)是 ,請(qǐng)用類似的方法在下圖數(shù)軸上畫(huà)出表示數(shù)的B點(diǎn)(保留作圖痕跡).
5 |
5 |
3 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com