25.我們知道.“直角三角形斜邊上的高線將三角形分成兩個(gè)與原三角形相似的直角三角形 .用這一方法.將矩形ABCD分割成大小不同的七個(gè)相似直角三角形.按從大到小的順序編號(hào)為①-⑦.從而割成一副“三角七巧板 .已知線段AB=1.. 查看更多

 

題目列表(包括答案和解析)

(本題滿(mǎn)分8分)先閱讀讀短文,再解答短文后面的問(wèn)題:
在幾何學(xué)中,通常用點(diǎn)表示位置,用線段的長(zhǎng)度表示兩點(diǎn)間的距離,用一條射線表示一個(gè)方向。在線段的兩個(gè)端點(diǎn)中(如圖),如果我們規(guī)定一個(gè)順序:為始點(diǎn),為終點(diǎn),我們就說(shuō)線段具有射線的方向,線段叫做有向線段,記作,線段的長(zhǎng)度叫做有向線段的長(zhǎng)度(或模),記作
有向線段包含三個(gè)要素:始點(diǎn)、方向和長(zhǎng)度,知道了有向線段的始點(diǎn),它的終點(diǎn)就被方向和長(zhǎng)度一確定。解答下列問(wèn)題:

小題1:(1)在平面直角坐標(biāo)系中畫(huà)出有向線段(有向線段與軸的長(zhǎng)度單位相同),,軸的正半軸的夾角是,且與軸的正半軸的夾角是;
小題2:(2)若的終點(diǎn)的坐標(biāo)為(3,),求它的模及它與軸的正半軸的夾角 的度數(shù)。

查看答案和解析>>

(本題滿(mǎn)分8分)通過(guò)學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖①在△ABC中,AB=AC,頂角A的正對(duì)記作sad A,這時(shí)sad A.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解下列問(wèn)題:

(1)sad 60°=           .

(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是

(3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

 

 

 
 A

B

 

B

 
 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本題滿(mǎn)分8分)通過(guò)學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖①在△ABC中,AB=AC,頂角A的正對(duì)記作sad A,這時(shí)sad A.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解下列問(wèn)題:
(1)sad 60°=           .
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sad A的取值范圍是
(3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

 

 
 A

 

查看答案和解析>>

(本題滿(mǎn)分8分)通過(guò)學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖①在△ABC中,AB=AC,頂角A的正對(duì)記作sad A,這時(shí)sad A.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解下列問(wèn)題:
(1)sad 60°=           .
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sad A的取值范圍是
(3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

 

 
 A

 

查看答案和解析>>

(本題滿(mǎn)分8分)通過(guò)學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖①在△ABC中,AB=AC,頂角A的正對(duì)記作sad A,這時(shí)sad A.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解下列問(wèn)題:

(1)sad 60°=            .

(2)對(duì)于0°<A<180°,∠A的正對(duì)值sad A的取值范圍是

(3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

 

 

 
 A

B

 

B

 
 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案