28. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

   如圖,在平面直角坐標系中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知,,△ABC的面積,拋物線

經(jīng)過A、B、C三點。

   1.(1)求此拋物線的函數(shù)表達式;

   2.(2)設(shè)E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;

   3.(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為?若存在,求出點M的坐標;若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分12分,每題6分)

  (1)計算:

(2)解不等式組:,并寫出該不等式組的最小整數(shù)解。

 

 

查看答案和解析>>

  (本小題滿分12分)

 1. (1)觀察發(fā)現(xiàn)

    如(a)圖,若點A,B在直線同側(cè),在直線上找一點P,使AP+BP的值最。

    做法如下:作點B關(guān)于直線的對稱點,連接,與直線的交點就是所求的點P

    再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。

做法如下:作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為       . (2分)

        

 

2.(2)實踐運用

   如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.  (5分)

 

查看答案和解析>>

 (本小題滿分12分)

如圖,在平面直角坐標系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經(jīng)過點C,交y軸于點G。

1.(1)點C、D的坐標分別是C(        ),D(       );

2.(2)求頂點在直線y=上且經(jīng)過點C、D的拋物

線的解析式;

3.(3)將(2)中的拋物線沿直線y=平移,平移后   

的拋物線交y軸于點F,頂點為點E(頂點在y軸右側(cè))。

平移后是否存在這樣的拋物線,使⊿EFG為等腰三角形?

若存在,請求出此時拋物線的解析式;若不存在,請說

明理由。

 

查看答案和解析>>

(本小題滿分12分)

如圖,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當(dāng)點M到達點B時,兩點同時停止運動.過點M作直線l∥AD,與折線A-C-B的交點為Q.點M運動的時間為t(秒).

(1)當(dāng)時,求線段的長;

(2)點M在線段AB上運動時,是否可以使得以C、P、Q為頂點的三角形為直角三角形,若可以,請直接寫出t的值(不需解題步驟);若不可以,請說明理由.

(3)若△PCQ的面積為y,請求y關(guān)于出t 的函數(shù)關(guān)系式及自變量的取值范圍;

 

查看答案和解析>>


同步練習(xí)冊答案