題目列表(包括答案和解析)
如圖所示,制作某種食品的同時需將原材料加熱,設(shè)該材料溫度為y ℃,從加熱開始計算的時間為x分鐘.據(jù)了解,該材料在加熱過程中溫度y與時間x成一次函數(shù)關(guān)系.已知該材料在加熱前的溫度為4℃,加熱一段時間使材料溫度達到28℃時停止加熱,停止加熱后,材料溫度逐漸下降,這時溫度y與時間x成反比例函數(shù)關(guān)系,已知當?shù)?2分鐘時, 材料溫度是14℃.
(1)分別求出該材料加熱和停止加熱過程中y與x的函數(shù)關(guān)系式(寫出x的取值范圍);
(2)根據(jù)該食品制作要求,在材料溫度不低于12℃的這段時間內(nèi),需要對該材料進行特殊處理,那么對該材料進行特殊處理的時間為多少分鐘?
如圖所示,在直角坐標系中,一次函數(shù)y=6-x與反比例函數(shù)y=(x>0)的圖象相交于點A,B,設(shè)點A的坐標為(x1,y1),那么長為x1,寬為y1的矩形的面積和周長分別為
A.4,12
B.8,12
C.4,6
D.8,6
某精品水果超市銷售一種進口水果A,從去年1至7月,這種水果的進價一路攀升,每千克A的進價與月份(,且為整數(shù)),之間的函數(shù)關(guān)系式如下表 :
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
(元/千克) | 50 | 60 | 70 | 80 | 90 | 100 | 110 |
隨著我國對一些國家進出口關(guān)稅的調(diào)整,該水果的進價漲勢趨緩,在8至12月份每千克水果A的進價與月份(,且為整數(shù))之間存在如下圖所示的變化趨勢.
(1)請觀察表格和圖像,用所學過的一次函數(shù)、反比例函數(shù)、二次函數(shù)的有關(guān)知識分別寫出 與和與的函數(shù)關(guān)系式.
(2)若去年該水果的售價為每千克180元,且銷售該水果每月必須支出(除進價外)的固定支出為300元,已知該水果在1月至7月的銷量(千克)與月份滿足:;8月至12月的銷量(千克)與月份滿足:;則該水果在第幾月銷售時,可使該月所獲得的利潤最大?并求出此時的最大利潤.
(3)今年1月到6月,該進口水果的進價進行調(diào)整,每月進價均比去年12月的進價上漲15元,且每月的固定支出(除進價外)增加了15%,已知該進口水果的售價在去年的基礎(chǔ)上提高了(<100),與此同時每月的銷量均在去年12月的基礎(chǔ)上減少了,這樣銷售下去要使今年1至6月的總利潤為68130元,試求出的值.(保留兩個有效數(shù)字)(參考數(shù)據(jù): , ,)
某精品水果超市銷售一種進口水果A,從去年1至7月,這種水果的進價一路攀升,每千克A的進價與月份(,且為整數(shù)),之間的函數(shù)關(guān)系式如下表 :
月份 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
(元/千克) |
50 |
60 |
70 |
80 |
90 |
100 |
110 |
隨著我國對一些國家進出口關(guān)稅的調(diào)整,該水果的進價漲勢趨緩,在8至12月份每千克水果A的進價與月份(,且為整數(shù))之間存在如下圖所示的變化趨勢.
(1)請觀察表格和圖像,用所學過的一次函數(shù)、反比例函數(shù)、二次函數(shù)的有關(guān)知識分別寫出 與和與的函數(shù)關(guān)系式.
(2)若去年該水果的售價為每千克180元,且銷售該水果每月必須支出(除進價外)的固定支出為300元,已知該水果在1月至7月的銷量(千克)與月份滿足:;8月至12月的銷量(千克)與月份滿足:;則該水果在第幾月銷售時,可使該月所獲得的利潤最大?并求出此時的最大利潤.
(3)今年1月到6月,該進口水果的進價進行調(diào)整,每月進價均比去年12月的進價上漲15元,且每月的固定支出(除進價外)增加了15%,已知該進口水果的售價在去年的基礎(chǔ)上提高了(<100),與此同時每月的銷量均在去年12月的基礎(chǔ)上減少了,這樣銷售下去要使今年1至6月的總利潤為68130元,試求出的值.(保留兩個有效數(shù)字)(參考數(shù)據(jù): , ,)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com