設(shè)拋物線y=ax
2+bx+c與X軸交于兩不同的點A(-1,0),B(m,0),(點A在點B的左邊),與y軸的交點為點C(0,-2),且∠ACB=90°.
(1)求m的值和該拋物線的解析式;
(2)若點D為該拋物線上的一點,且橫坐標(biāo)為1,點E為過A點的直線y=x+1與該拋物線的另一交點.在X軸上是否存在點P,使得以P、B、D為頂點的三角形與△AEB相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
(3)連接AC、BC,矩形FGHQ的一邊FG在線段AB上,頂點H、Q分別在線段AC、BC上,若設(shè)F點坐標(biāo)為(t,0),矩形FGHQ的面積為S,當(dāng)S取最大值時,連接FH并延長至點M,使HM=k•FH,若點M不在該拋物線上,求k的取值范圍.