如下圖.在等腰ΔABC中.CH是底邊上的高線.點P是線段CH上不與端點重合的任意一點.連結(jié)AP交BC于點E.連結(jié)BP交AC于點F.(1)證明:∠CAE=∠CBF,(2)證明:AE=BF,(3)以線段AE.BF和AB為邊構(gòu)成一個新的三角形ABG.記ΔABC和ΔABG的面積分別為SΔABC和SΔABG.如果存在點P.能使SΔABC=SΔABG.求∠C的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)
如圖,有一直徑MN=4的半圓形紙片,其圓心為點P,從初始位置Ⅰ開始,在無滑動的情況下沿數(shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點A,且此時△MPA為等邊三角形.
解答下列問題:(各小問結(jié)果保留π)
(1)位置Ⅰ中的點O到直線MN的距離為   
位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是     ;
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   ;
(3)求OA的長.

查看答案和解析>>

(本小題滿分10分)

如圖,有一直徑MN=4的半圓形紙片,其圓心為點P,從初始位置Ⅰ開始,在無滑動的情況下沿數(shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點A,且此時△MPA為等邊三角形.

解答下列問題:(各小問結(jié)果保留π)

(1)位置Ⅰ中的點O到直線MN的距離為    ;

位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是      ;

(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   ;

(3)求OA的長.

 

 

查看答案和解析>>

(本小題滿分10分)

如圖,有一直徑MN=4的半圓形紙片,其圓心為點P,從初始位置Ⅰ開始,在無滑動的情況下沿數(shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點A,且此時△MPA為等邊三角形.

解答下列問題:(各小問結(jié)果保留π)

(1)位置Ⅰ中的點O到直線MN的距離為    ;

位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是     ;

(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   ;

(3)求OA的長.

 

 

查看答案和解析>>

(本小題滿分10分)
如圖,有一直徑MN=4的半圓形紙片,其圓心為點P,從初始位置Ⅰ開始,在無滑動的情況下沿數(shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點A,且此時△MPA為等邊三角形.
解答下列問題:(各小問結(jié)果保留π)
(1)位置Ⅰ中的點O到直線MN的距離為   ;
位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是     ;
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   ;
(3)求OA的長.

查看答案和解析>>

(本小題滿分10分)
如圖,有一直徑MN=4的半圓形紙片,其圓心為點P,從初始位置Ⅰ開始,在無滑動的情況下沿數(shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點A,且此時△MPA為等邊三角形.
解答下列問題:(各小問結(jié)果保留π)
(1)位置Ⅰ中的點O到直線MN的距離為   
位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是     ;
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   
(3)求OA的長.

查看答案和解析>>


同步練習(xí)冊答案