(2)如圖2,過原點(diǎn)O作另一條直線l,交雙曲線于P,Q兩點(diǎn),點(diǎn)P在第一象限.①說明四邊形APBQ一定是平行四邊形,②設(shè)點(diǎn)A,P的橫坐標(biāo)分別為m,n, 四邊形APBQ可能是矩形嗎?可能是正方形嗎?若可能, 直接寫出m,n應(yīng)滿足的條件,若不可能.請(qǐng)說明理由. 查看更多

 

題目列表(包括答案和解析)

如圖,已知雙曲線y=
kx
(k>0)與直線y=k′x交于A,B兩點(diǎn),點(diǎn)P在第一象限.
精英家教網(wǎng)
(1)若點(diǎn)A的坐標(biāo)為(3,2),則k的值為
 
,k′的值為
 
;點(diǎn)B的坐標(biāo)為(
 
);
(2)若點(diǎn)A(m,m-1),P(m-2,m+3)都在雙曲線的圖象上,試求出m的值;
(3)如圖,在(2)小題的條件下:
①過原點(diǎn)O和點(diǎn)P作一條直線,交雙曲線于另一點(diǎn)Q,試證明四邊形APBQ是平行四邊形;
②如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),以點(diǎn)P,A,M,N為頂點(diǎn)的四邊形是平行四邊形,試求出點(diǎn)M和點(diǎn)N的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

如圖1,已知雙曲線y=
k
x
(k>0)
與直線y=k′x交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:
(1)若點(diǎn)A的坐標(biāo)為(4,2),則點(diǎn)B的坐標(biāo)為
 
;若點(diǎn)A的橫坐標(biāo)為m,則點(diǎn)B的坐標(biāo)可表示為
 

(2)如圖2,過原點(diǎn)O作另一條直線l,交雙曲線y=
k
x
(k>0)
于P,Q兩點(diǎn),點(diǎn)P在第一象限.
①說明四邊形APBQ一定是平行四邊形;
②設(shè)點(diǎn)A,P的橫坐標(biāo)分別為m,n,四邊形APBQ可能是矩形嗎?可能是正方形嗎?若可能,直接寫出m,n應(yīng)滿足的條件;若不可能,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

如圖1,已知雙曲線y=
a
x
(a>0)
與直線y=kx交于A,C兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:

(1)若點(diǎn)A的坐標(biāo)為(4,2),則點(diǎn)C的坐標(biāo)為
(-4,-2)
(-4,-2)
;若點(diǎn)A的橫坐標(biāo)為m,則點(diǎn)C的坐標(biāo)可表示為
(-m,-km)或(-m,-
a
m
(-m,-km)或(-m,-
a
m
;
(2)如圖2,過原點(diǎn)O作另一條直線l交雙曲線y=
a
x
于B,D兩點(diǎn),點(diǎn)B在第一象限.設(shè)點(diǎn)A,B的橫坐標(biāo)分別為m,n.
①四邊形ABCD可能是矩形嗎?若可能,直接寫出m,n應(yīng)滿足的條件;若不可能,請(qǐng)說明理由.
②四邊形ABCD可能是正方形嗎?若可能,直接寫出m,n應(yīng)滿足的條件;若不可能,請(qǐng)說明理由.

查看答案和解析>>

如圖1,已知雙曲線y1=
k
x
(k>0)
與直線y2=k'x交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:
(1)若點(diǎn)A的坐標(biāo)為(3,1),則點(diǎn)B的坐標(biāo)為
(-3,-1)
(-3,-1)
;
(2)當(dāng)x滿足:
-3≤x<0或x≥3
-3≤x<0或x≥3
時(shí),y1≤y2;
(3)過原點(diǎn)O作另一條直線l,交雙曲線y=
k
x
(k>0)
于P,Q兩點(diǎn),點(diǎn)P在第一象限,如圖2所示.
①四邊形APBQ一定是
平行四邊形
平行四邊形
;
②若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P的橫坐標(biāo)為1,求四邊形APBQ的面積.

查看答案和解析>>

如圖1,已知雙曲線y=
k
x
(k>0)
與直線y=k1x交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:
(1)若點(diǎn)A的坐標(biāo)為(4,2),則點(diǎn)B的坐標(biāo)為
 
;
(2)若點(diǎn)A的橫坐標(biāo)為m,則點(diǎn)B的坐標(biāo)可表示為
 
;(用m、k表示)
(3)如圖2,過原點(diǎn)O作另一條直線y=k2x(k1≠k2),交雙曲線y=
k
x
(k>0)
于P,Q兩點(diǎn),點(diǎn)P在第一象限,求證:四邊形APBQ一定是平行四邊形;
(4)如圖3,當(dāng)k=12,k1=
3
4
k2=
4
3
時(shí),判定四邊形APBQ的形狀,并證明.
精英家教網(wǎng)

查看答案和解析>>


同步練習(xí)冊(cè)答案