如圖.在平面直角坐標(biāo)系中.已知△AOB是等邊三角形,點(diǎn)A的坐標(biāo)是(0.4).點(diǎn)B在第一象限.點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn).連結(jié)AP.并把△AOP繞著點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn).使邊AO與AB重合.得到△ABD.(1)求直線AB的解析式, 查看更多

 

題目列表(包括答案和解析)

 (本題12分) 如圖,在平面直角坐標(biāo)系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經(jīng)過(guò)點(diǎn)C,交y軸于點(diǎn)G,且∠AGO=30°。

(1)點(diǎn)C、D的坐標(biāo)分別是C(       ),D(       );

(2)求頂點(diǎn)在直線y=上且經(jīng)過(guò)點(diǎn)C、D的拋物線的解析式;

(3)將(2)中的拋物線沿直線y=平移,平移后的拋物線交y軸于點(diǎn)F,頂點(diǎn)為點(diǎn)E。平移后是否存在這樣的拋物線,使△EFG為等腰三角形?若存在,請(qǐng)求出此時(shí)拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

(本題12分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),以OA為直徑在第一象限內(nèi)作半圓C,點(diǎn)B是該半圓周上一動(dòng)點(diǎn),連結(jié)OB、AB,并延長(zhǎng)AB至點(diǎn)D,使DB=AB,過(guò)點(diǎn)Dx軸垂線,分別交x軸、直線OB于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)CF

(1)當(dāng)∠AOB=30°時(shí),求弧AB的長(zhǎng)度;

(2)當(dāng)DE=8時(shí),求線段EF的長(zhǎng);

(3)在點(diǎn)B運(yùn)動(dòng)過(guò)程中,是否存在以點(diǎn)E、CF為頂點(diǎn)的三角形與△AOB相似,若存在,請(qǐng)求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

(本題12分) 如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn), A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).

(1)求b,c的值.

(2)連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形, 那么是否存在點(diǎn)P,使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

 

查看答案和解析>>

(本題12分)如圖,在平面直角坐標(biāo)系中,等腰梯形OABC,CB//OA,且點(diǎn)A在x軸正半軸上.已知C(2,4),BC=4.

(1)求過(guò)O、C、B三點(diǎn)的拋物線解析式,并寫出頂點(diǎn)坐標(biāo)和對(duì)稱軸;

(2)經(jīng)過(guò)O、C、B三點(diǎn)的拋物線上是否存在P點(diǎn)(與原點(diǎn)O不重合),使得P點(diǎn)到兩坐標(biāo)軸的

距離相等.如果存在,求出P點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

(本題12分) 如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn), A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).

(1)求b,c的值.

(2)連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形,那么是否存在點(diǎn)P,使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案