(3)動點從點出發(fā).沿折線的路線移動過程中.設的面積為.請直接寫出與的函數(shù)關系式.并指出自變量的取值范圍, 查看更多

 

題目列表(包括答案和解析)

如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動的速度分別為每秒3,4,5 個單位.直線l從與AC重合的位置開始,以每秒
43
個單位的速度沿CB方向平行移動,即移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設運動的時間為t秒,當點P第一次回到點A時,點P和直線l同時停止運動
(1)①當t=3秒時,點P走過的路徑長為
 
;②當t=
 
秒時,點P與點E重合;③當t=
 
秒時,PE∥AB;
(2)當點P在AC邊上運動時,將△PEF繞點E逆時針旋轉(zhuǎn),使得點P的對應點M落在EF上,點F的對應點記為點N,當EN⊥AB時,求t的值;
(3)當點P在折線AC-CB-BA上運動時,作點P關于直線EF的對稱點,記為點Q.在點P與直線l運動的過程中,若形成的四邊形PEQF為菱形,請直接寫出t的值.

查看答案和解析>>

如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動,速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向平行移動,即移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設運動的時間為t秒,當點P第一次回到點A時,點P和直線l同時停止運動.
(1)當t=5秒時,點P走過的路徑長為______;當t=______秒時,點P與點E重合;
(2)當點P在AC邊上運動時,將△PEF繞點E逆時針旋轉(zhuǎn),使得點P的對應點M落在EF上,點F的對應點記為點N,當EN⊥AB時,求t的值;
(3)當點P在折線AC-CB-BA上運動時,作點P關于直線EF的對稱點,記為點Q.在點P與直線l運動的過程中,若形成的四邊形PEQF為菱形,請直接寫出t的值.

查看答案和解析>>

如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動,速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向平行移動,即移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設運動的時間為t秒,當點P第一次回到點A時,點P和直線l同時停止運動.
(1)當t=5秒時,點P走過的路徑長為______;當t=______秒時,點P與點E重合;
(2)當點P在AC邊上運動時,將△PEF繞點E逆時針旋轉(zhuǎn),使得點P的對應點M落在EF上,點F的對應點記為點N,當EN⊥AB時,求t的值;
(3)當點P在折線AC-CB-BA上運動時,作點P關于直線EF的對稱點,記為點Q.在點P與直線l運動的過程中,若形成的四邊形PEQF為菱形,請直接寫出t的值.

查看答案和解析>>

(2010•路南區(qū)三模)已知,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,BD平分∠ABC,交AC于點D.動點P從D點出發(fā)沿DC向終點C運動,速度為每秒1個單位,動點Q從B點出發(fā)沿BA向終點A運動,速度為每秒4個單位.兩點同時出發(fā),當一點到達終點時,兩點停止運動.設P、Q運動時間為t秒.
(1)求線段CD的長;
(2)求△BPQ的面積S與t之間的函數(shù)關系式;當S=7.2時,求t的值;
(3)在點P、點Q的移動過程中,如果將△APQ沿其一邊所在直線翻折,翻折后的三角形與△APQ組成一個四邊形,直接寫出使所組成的四邊形為菱形的t的值.

查看答案和解析>>

已知:如圖,在直角梯形COAB中,OC∥AB,以O為原點建立平面直角坐標系,A,B,C三點的坐標分別是A(8,0),B(8,10),C(0,4),點D(4,7)是CB的中點,動點P從點O出發(fā),以每秒1個單位的速度,沿折線OAB的路線移動,精英家教網(wǎng)移動的時間是秒t,設△OPD的面積是S.
(1)求直線BC的解析式;
(2)請求出S與t的函數(shù)關系式,并指出自變量t的取值范圍;
(3)求S的最大值;
(4)當9≤t<12時,求S的范圍.

查看答案和解析>>


同步練習冊答案