24.如圖所示.在Rt△ABC中.AB=AC.∠BAC=90°,O為BC的中點.(1)寫出點O到△ABC的三個頂點A.B.C的距離的大小關(guān)系,(2)如果點M.N分別在線段AB.AC上移動.在移動中保持AN=BM.請判斷△OMN的形狀.并證明你的結(jié)論. 查看更多

 

題目列表(包括答案和解析)

(本題滿分10分)

情境觀察

將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是  ▲   ,∠CAC′=  ▲   °.

 

 

 

 

 

 


問題探究

如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分

別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等

腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為

P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

 

拓展延伸

如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.

 

查看答案和解析>>

(本題滿分10分)

情境觀察

將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是   ▲   ,∠CAC′=   ▲   °.

 

 

 

 

 

 


問題探究

如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分

別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等

腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為

P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

 

拓展延伸

如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.

 

查看答案和解析>>


同步練習冊答案