21.有這樣一道題:先化簡.再求值:.其中“ .小亮同學做題時把“ 錯抄成了“ 但他的計算結果也是正確的.請你解釋這是怎么回事. 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)有這樣一道習題:已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ.說明:RQ為⊙O的切線. (無須證明)

  請?zhí)骄肯铝凶兓?/p>

  變化一:交換題設與結論.

如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ.(要證明)

 

     

 

  變化二:運動探求.

  (1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷) 答:_________.

  (2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,變化一中的結論還成立嗎?為什么? 來]

 

查看答案和解析>>

(本題滿分12分)有這樣一道習題:已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ.說明:RQ為⊙O的切線. (無須證明)

  請?zhí)骄肯铝凶兓?/p>

  變化一:交換題設與結論.

如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ.(要證明)

 

     

 

  變化二:運動探求.

  (1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷) 答:_________.

  (2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,變化一中的結論還成立嗎?為什么? 來]

 

查看答案和解析>>

(本題滿分12分)有這樣一道習題:已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ.說明:RQ為⊙O的切線. (無須證明)
  請?zhí)骄肯铝凶兓?br />  變化一:交換題設與結論.
如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ.(要證明)

     
  變化二:運動探求.
  (1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷) 答:_________.
  (2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,變化一中的結論還成立嗎?為什么? 來]

查看答案和解析>>

(本題滿分12分)有這樣一道習題:已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ.說明:RQ為⊙O的切線. (無須證明)
  請?zhí)骄肯铝凶兓?br />  變化一:交換題設與結論.
如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ.(要證明)

     
  變化二:運動探求.
  (1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷) 答:_________.
  (2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,變化一中的結論還成立嗎?為什么? 來]

查看答案和解析>>

(本小題滿分10分)有3張不透明的卡片,除正面寫有不同的數(shù)字外,其它均相同.將這三張卡片背面朝上洗勻后,第一次從中隨機抽取一張,并把這張卡片標有的數(shù)字記作一次函數(shù)表達式中的,第二次從余下的兩張卡片中再隨機抽取一張,上面標有的數(shù)字記作一次函數(shù)表達式中的
(1)寫出為負數(shù)的概率;
(2)求一次函數(shù)的圖象經(jīng)過二、三、四象限的概率.(用樹狀圖或列表法求解)

查看答案和解析>>


同步練習冊答案