把矩形紙片ABCD沿BE折疊.使得BA邊與BC重合.然后再沿著BF折疊.使得BE也與BC邊重合.展開后如圖所示.則的度數為 . 查看更多

 

題目列表(包括答案和解析)

精英家教網把矩形紙片ABCD沿BE折疊,使得BA邊與BC重合,然后再沿著BF折疊,使得折痕BE也與BC邊重合,展開后如圖所示,則∠DFB等于( 。
A、22.5°B、67.5°C、112.5°D、120°

查看答案和解析>>

把矩形紙片ABCD沿BE折疊,使得BA邊與BC重合,然后再沿著BF折疊,使得折痕BE也與BC邊重合,展開后如圖所示,則∠DFB等于


  1. A.
    22.5°
  2. B.
    67.5°
  3. C.
    112.5°
  4. D.
    120°

查看答案和解析>>

把矩形紙片ABCD沿BE折疊,使得BA邊與BC重合,然后再沿著BF折疊,使得BE也與BC邊重合,展開后如圖所示,則的度數為        

查看答案和解析>>

根據所給的基本材料,請你進行適當的處理,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.
精英家教網
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數表示).
精英家教網
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設運動的時間為t(s)(0<t<2).
精英家教網
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設△AQP的面積為y(cm2),求y與t之間的函數關系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數解析式驗證;
(3)利用余弦定理得出PC、PQ,聯立方程,求得t,再代入PC解得答案.

查看答案和解析>>

根據所給的基本材料,請你進行適當的處理,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.

材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=______AC(用含α的三角函數表示).

材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設運動的時間為t(s)(0<t<2).

編寫試題選取的材料是______(填寫材料的序號)
編寫的試題是:(1)設△AQP的面積為y(cm2),求y與t之間的函數關系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數解析式驗證;
(3)利用余弦定理得出PC、PQ,聯立方程,求得t,再代入PC解得答案.

查看答案和解析>>


同步練習冊答案