一快餐店試銷某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本).若每份售價不超過10元,每天可銷售400份;若每份售價超過10元,每提高1元,每天的銷售量就減少40份.為了便于結(jié)算,每份套餐的售價x(元)取整數(shù),且要求售價一定高于成本價,用y(元)表示該店日銷售利潤、(日銷售利潤=每天的銷售額-套餐成本-每天固定支出)
(1)當每份套餐售價不超過10元時,請寫出y與x的函數(shù)關(guān)系式及自變量的取值范圍;
(2)當每份售價超過10元時,該店既要吸引顧客,使每天銷售量較大,又要有最高的日銷售利潤.按此要求,每份套餐的售價應(yīng)定為多少元?此時日銷售利潤為多少?
(3)新年即將到來,該快餐店準備為某福利院30個小朋友送去新年的禮物,已知購買一份禮物需要20元,于是快餐店統(tǒng)一將套餐的售價定為10元以上,并且每賣出一份快餐就捐出2元作為福利院小朋友購買禮物的經(jīng)費,則快餐店在售價不超過14元的情況下至少將套餐定為多少錢一份,可使日銷售利潤(不包含已捐出的錢)達到900元?并通過分析判斷此時所集經(jīng)費是否能夠為福利院每個小朋友都購買一份禮物.
(其中
≈4.36,
≈4.12)