其對稱軸分別是: . . . .六.探索與創(chuàng)新題: 查看更多

 

題目列表(包括答案和解析)

同學們已經(jīng)認識了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關的幾個概念.如正六邊形ABCDEF各邊對稱軸的交點O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內任意一點到各邊距離之和與這個正多邊形的半徑R和中心角有什么關系?
探索發(fā)現(xiàn):
(1)為了解決這個問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內任意一點,P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關系.
解:設△ABC的邊長是a,面積為S,顯然S=數(shù)學公式a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個全等的等腰三角形,過點O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos數(shù)學公式∠AOB=Rcos數(shù)學公式×120°=Rcos60°,
AM=OAsin∠AOM=Rsin數(shù)學公式∠AOB=Rsin數(shù)學公式×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=數(shù)學公式AB×OM=數(shù)學公式×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
數(shù)學公式a(h1+h2+h3)=3R2sin60°cos60°
即:數(shù)學公式×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內任意一點,P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關系.
(3)類比上述探索過程,直接填寫結論
正六邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6=________
正八邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=________
正n邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+…+hn=________.

查看答案和解析>>

同學們已經(jīng)認識了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關的幾個概念.如正六邊形ABCDEF各邊對稱軸的交點O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內任意一點到各邊距離之和與這個正多邊形的半徑R和中心角有什么關系?
探索發(fā)現(xiàn):
(1)為了解決這個問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內任意一點,P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關系.
解:設△ABC的邊長是a,面積為S,顯然S=a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個全等的等腰三角形,過點O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos∠AOB=Rcos×120°=Rcos60°,
AM=OAsin∠AOM=Rsin∠AOB=Rsin×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=AB×OM=×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
a(h1+h2+h3)=3R2sin60°cos60°
即:×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內任意一點,P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關系.
(3)類比上述探索過程,直接填寫結論
正六邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6=______
正八邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=______
正n邊形(半徑是R)內任意一點P到各邊距離之和  h1+h2+…+hn=______.

查看答案和解析>>

(2012•青島模擬)同學們已經(jīng)認識了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關的幾個概念.如正六邊形ABCDEF各邊對稱軸的交點O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內任意一點到各邊距離之和與這個正多邊形的半徑R和中心角有什么關系?
探索發(fā)現(xiàn):
(1)為了解決這個問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內任意一點,P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關系.
解:設△ABC的邊長是a,面積為S,顯然S=
1
2
a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個全等的等腰三角形,過點O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內任意一點,P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關系.
(3)類比上述探索過程,直接填寫結論
正六邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n邊形(半徑是R)內任意一點P到各邊距離之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>


同步練習冊答案