A.EB=2EA B.EB=3EA C.EB=4EA D.EB=5EA 查看更多

 

題目列表(包括答案和解析)

如圖,大樓AB、CD和大樹EF的底端B、D、F在同一直線上,BF=FD=10米,AB=16米,某人在樓頂A處測(cè)得點(diǎn)C的仰角為22°,測(cè)得點(diǎn)E的俯角為45°.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)

(1)求大樹EF的高度;
(2)求大樓CD的高度.

查看答案和解析>>


【問題提出】我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
【問題解決】如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。

解:由圖可知:,

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【類比應(yīng)用】(1)已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a .
試比較M與N的大小.
(2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,
AB為c)三邊滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長(zhǎng)方形,
使得△ABC的兩個(gè)頂點(diǎn)為長(zhǎng)方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落
在長(zhǎng)方形的這一邊的對(duì)邊上。
 
①這樣的長(zhǎng)方形可以畫     個(gè);
②所畫的長(zhǎng)方形中哪個(gè)周長(zhǎng)最?為什么?
【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

如圖,某校一幢教學(xué)大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測(cè)得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測(cè)得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

為了求的值,
可令S=,
則2S= ,因此2S-S=,
所以仿照以上推理計(jì)算
的值是(     )

A.B.C.D.

查看答案和解析>>

如圖,梯形ABCD中,AD∥BC,AB=AC,AB⊥AC,BC=BD,E為FD中點(diǎn),下列結(jié)論中:
①∠ADB=30°;②AD=
1
2
BC;③AD=
2
AE;④EB-EC=
2
EA.其中正確的結(jié)論是(  )

查看答案和解析>>


同步練習(xí)冊(cè)答案