(2)證明為直角三角形, 查看更多

 

題目列表(包括答案和解析)

如圖,拋物線軸交于兩點(diǎn),與軸交于點(diǎn).

(1)求三點(diǎn)的坐標(biāo);

(2)證明為直角三角形;

(3)在拋物線上除點(diǎn)外,是否還存在另外一個(gè)點(diǎn),使是直角三角形,若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

 


查看答案和解析>>

22、我們知道,兩邊及其中一邊的對(duì)角分別對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.那么在什么情況下,它們會(huì)全等?
(1)閱讀與證明:
對(duì)于這兩個(gè)三角形均為直角三角形,顯然它們?nèi)龋?BR>對(duì)于這兩個(gè)三角形均為鈍角三角形,可證它們?nèi)龋ㄗC明略).
對(duì)于這兩個(gè)三角形均為銳角三角形,它們也全等,可證明如下:
已知:△ABC、△A1B1C1均為銳角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl
求證:△ABC≌△A1B1C1
(請(qǐng)你將下列證明過程補(bǔ)充完整.)
證明:分別過點(diǎn)B,B1作BD⊥CA于D,
B1D1⊥C1A1于D1
則∠BDC=∠B1D1C1=90°,
∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1D1
∴BD=B1D1
(2)歸納與敘述:
由(1)可得到一個(gè)正確結(jié)論,請(qǐng)你寫出這個(gè)結(jié)論.

查看答案和解析>>

已知,如圖,梯形ABCD中,AB∥CD,∠A=90°,AB=3,CD=2,AD=5,P從D出發(fā)沿射線DA運(yùn)動(dòng),且P的速度為每秒1個(gè)單位長(zhǎng)度,設(shè)P的運(yùn)動(dòng)時(shí)間為t,△PBC的面積為S.
(1)寫出當(dāng)0≤t≤5時(shí),S與t的函數(shù)關(guān)系式.
(2)是否存在時(shí)刻t使△PBC的周長(zhǎng)最?若存在,在圖中畫出P的位置(只需標(biāo)明數(shù)量關(guān)系,不要求證明),并求出t取何值時(shí),△PBC的周長(zhǎng)最;若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)t為何值時(shí),△PBC為直角三角形,請(qǐng)寫出推理過程(利用圖2解題).

查看答案和解析>>

如圖,拋物線y=x2+bx+c的頂點(diǎn)為D(-1,-4),與y軸交于點(diǎn)C(0,-3),與x軸交于A,B兩精英家教網(wǎng)點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線的解析式;
(2)連接AC,CD,AD,試證明△ACD為直角三角形;
(3)若點(diǎn)E在拋物線的對(duì)稱軸上,拋物線上是否存在點(diǎn)F,使以A,B,E,F(xiàn)為頂點(diǎn)的四邊形為平行四邊形?若存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(2013•營(yíng)口)如圖1,△ABC為等腰直角三角形,∠ACB=90°,F(xiàn)是AC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)F與A、C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.
(1)①猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;
②將圖1中的正方形CDEF,繞著點(diǎn)C按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度α,得到如圖2、圖3的情形.圖2中BF交AC于點(diǎn)H,交AD于點(diǎn)O,請(qǐng)你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
(2)將原題中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90°,正方形CDEF改為矩形CDEF,如圖4,且AC=4,BC=3,CD=
43
,CF=1,BF交AC于點(diǎn)H,交AD于點(diǎn)O,連接BD、AF,求BD2+AF2的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案