23.如圖1.在△ABC中.∠ACB為銳角.D為射線BC上一點.連接AD.以AD為一邊直在AD的右側(cè)作正方形ADEF.解答下列問題:(1)如果AB=AC.∠BAC=90°①當點D在線段BC上時.如圖2.線段CF.BD之間的位置關(guān)系為 ,數(shù)量關(guān)系為 :②當點D在線段BC的延長線上時.如圖3.①中的結(jié)論是否成立?為什么?(2)如果AB≠AC.∠BAC≠90°.點D在線段BC上運動. 試探究.當△ABC滿足一個什么條件時.CF⊥BC?畫出相應(yīng)的圖形.并說明理由 查看更多

 

題目列表(包括答案和解析)

如圖1,在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問題:
(1)如果AB=AC,∠BAC=90°.
①當點D在線段BC上時(與點B不重合),如圖2,線段CF、BD之間的位置關(guān)系為
 
,數(shù)量關(guān)系為
 

②當點D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,為什么?
精英家教網(wǎng)
(2)①如果AB=AC,∠BAC≠90°,點D在射線BC上運動.在圖4中同樣作出正方形ADEF,你發(fā)現(xiàn)(1)問中的結(jié)論是否成立?不用說明理由;
②如果∠BAC=90°,AB≠AC,點D在射線BC上運動.在圖5中同樣作出正方形ADEF,你發(fā)現(xiàn)(1)問中的結(jié)論是否成立?不用說明理由;
精英家教網(wǎng)
(3)要使(1)問中CF⊥BC的結(jié)論成立,試探究:△ABC應(yīng)滿足的一個條件,(點C、F重合除外)畫出相應(yīng)圖形(畫圖不寫作法),并說明理由;
(4)在(3)問的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點P,設(shè)AC=2
2
,BC=
3
2
,求線段CP長的最大值.

查看答案和解析>>

如圖甲,在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問題:
精英家教網(wǎng)
(1)如果AB=AC,∠BAC=90度.
①當點D在線段BC上時(與點B不重合),如圖甲,線段CF、BD之間的位置關(guān)系為
 
,數(shù)量關(guān)系為
 

②當點D在線段BC的延長線上時,如圖乙,①中的結(jié)論是否仍然成立為什么(要求寫出證明過程)
(2)如果AB≠AC,∠BAC≠90°,點D在線段BC上運動.且∠BCA=45°時,
①請你判斷線段CF、BD之間的位置關(guān)系,并說明理由(要求寫出證明過程).
②若AC=4
2
,CF=3.求正方形ADEF的邊長(要求寫出計算過程).

查看答案和解析>>

27、如圖甲,在△ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問題:
(1)如果AB=AC,∠BAC=90°,
①當點D在線段BC上時(與點B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為
垂直
,數(shù)量關(guān)系為
相等

②當點D在線段BC的延長線上時,如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°點D在線段BC上運動.試探究:當△ABC滿足一個什么條件時,CF⊥BC(點C、F重合除外)?并說明理由.

查看答案和解析>>

23、如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①當點D在線段BC上時(與點B不重合),如圖2,線段CF、BD所在直線的位置關(guān)系為
垂直
,線段CF、BD的數(shù)量關(guān)系為
相等
;
②當點D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;
(2)如果AB≠AC,∠BAC是銳角,點D在線段BC上,當∠ACB滿足什么條件時,CF⊥BC(點C、F不重合),并說明理由.

查看答案和解析>>

如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,以AD為直角邊且在AD的上方作等腰直角三角形ADF.
(1)若AB=AC,∠BAC=90°.
①當點D在線段BC上時(與點B不重合),試探討CF與BD的數(shù)量關(guān)系和位置關(guān)系;
②當點D在線段BC的延長線上時,①中的結(jié)論是否仍然成立,請在圖2中畫出相應(yīng)圖形并說明理由;
(2)如圖3,若AB≠AC,∠BAC≠90°,∠BCA=45°點D在線段BC上運動,試探究CF與BC位置關(guān)系.

查看答案和解析>>


同步練習冊答案