如下圖.中....半徑為1的圓的圓心以1個(gè)單位/的速度由點(diǎn)沿方向在上移動(dòng).設(shè)移動(dòng)時(shí)間為(單位:). 查看更多

 

題目列表(包括答案和解析)

如下圖,在每個(gè)小正方形邊長為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.將△ABC向左平移2格,再向上平移4格.
(1)請?jiān)趫D中畫出平移后的△A′B′C′;
(2)再在圖中畫出△A′B′C′的高C′D′,并求出△ABC的面積.

查看答案和解析>>

教材第九章中探索乘法公式時(shí),設(shè)置由圖形面積的不同表示方法驗(yàn)證了乘法公式.我國著名的數(shù)學(xué)家趙爽,早在公元3世紀(jì),就把一個(gè)矩形分成四個(gè)全等的直角三角形,用四個(gè)全等的直角三角形拼成了一個(gè)大的正方形(如圖①),這個(gè)圖形稱為趙爽弦圖,驗(yàn)證了一個(gè)非常重要的結(jié)論:在直角三角形中兩直角邊、與斜邊滿足關(guān)系式,稱為勾股定理.

(1)愛動(dòng)腦筋的小明把這四個(gè)全等的直角三角形拼成了另一個(gè)大的正方形(如圖②),也能驗(yàn)證這個(gè)結(jié)論,請你幫助小明完成驗(yàn)證的過程.

(2)小明又把這四個(gè)全等的直角三角形拼成了一個(gè)梯形(如圖③),利用上面探究所得結(jié)論,求當(dāng)=3,=4時(shí)梯形ABCD的周長.

(3) 如下圖,在每個(gè)小正方形邊長為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.請?jiān)趫D中畫出△ABC的高BD,利用上面的結(jié)論,求高BD的長.

 

查看答案和解析>>

如下圖,在每個(gè)小正方形邊長為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.將△ABC向左平移2格,再向上平移4格.

(1)請?jiān)趫D中畫出平移后的△A′B′C′
(2)再在圖中畫出△A′B′C′的高C′D′,并求出△ABC的面積。

查看答案和解析>>

如下圖,在每個(gè)小正方形邊長為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.將△ABC向左平移2格,再向上平移4格.

(1)請?jiān)趫D中畫出平移后的△A′B′C′,
(2)再在圖中畫出△A′B′C′的高C′D′,并求出△ABC的面積。

查看答案和解析>>

教材第九章中探索乘法公式時(shí),設(shè)置由圖形面積的不同表示方法驗(yàn)證了乘法公式.我國著名的數(shù)學(xué)家趙爽,早在公元3世紀(jì),就把一個(gè)矩形分成四個(gè)全等的直角三角形,用四個(gè)全等的直角三角形拼成了一個(gè)大的正方形(如圖①),這個(gè)圖形稱為趙爽弦圖,驗(yàn)證了一個(gè)非常重要的結(jié)論:在直角三角形中兩直角邊與斜邊滿足關(guān)系式,稱為勾股定理.

(1)愛動(dòng)腦筋的小明把這四個(gè)全等的直角三角形拼成了另一個(gè)大的正方形(如圖②),也能驗(yàn)證這個(gè)結(jié)論,請你幫助小明完成驗(yàn)證的過程.
(2)小明又把這四個(gè)全等的直角三角形拼成了一個(gè)梯形(如圖③),利用上面探究所得結(jié)論,求當(dāng)=3,=4時(shí)梯形ABCD的周長.
(3) 如下圖,在每個(gè)小正方形邊長為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.請?jiān)趫D中畫出△ABC的高BD,利用上面的結(jié)論,求高BD的長.

查看答案和解析>>


同步練習(xí)冊答案